Вы здесь

Funct. Mater. 2016; 23 (1): 049-054.

http://dx.doi.org/10.15407/fm23.01.049

Fractal dimension of the breast cancer cells resistant and sensitive to doxorubicin activity

O.Medviediev1, O.Yu.Gorobets1, V.F.Chekhun2, S.V.Gorobets1, I.V.Demyanenko1, K.O.Butenko1

1 National Technical University "Kyiv Polytechnic Institute", 37 Prospect Peremogy, 03056 Kyiv, Ukraine
2 R.Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, 45 Vasylkivska St., 03022 Kyiv, Ukraine

Abstract: 

The main purpose of this research is examining and comparing of the fractal dimension (FD) and quantity of biogenic magnetic nanoparticles (BMN) of the resistant and sensitive MCF-line breast cancer cells to doxorubicin activity. The FD of boundaries of sensitive cells is greater than the FD of the boundaries of resistant cells. The quantity of BMN per one cell in sensitive and resistant cells do not differ. The FD of the cell boundaries can be an additional marker for the determination of cell sensitivity to the doxorubicin activity. The part of the tumor cell surface containing one BMN can be also the potential marker for the determination of the sensitivity to the doxorubicin action as well.

Keywords: 
fractal dimension; doxorubicin; MCF-line breast cancer cells; BMN.
References: 

1. R.Sedivy, R.M.Mader, Cancer Invest., 15, 601 (1997). http://dx.doi.org/10.3109/07357909709047603

2. G.A.Losa, D.Merlini, T.F.Nonnenmacher et al., Fractals in Biology and Medicine. v.IV., Birkhauser, Boston (2005). http://dx.doi.org/10.1007/3-7643-7412-8

3. A.B.Perez-Marin, V.Meseguer Zapata, J.F.Ortuno et al., J. Hazard. Mater., 139, 122 (2007). http://dx.doi.org/10.1016/j.jhazmat.2006.06.008

4. P.Dostalek, M.Patzak, P.Matejka, Int. Biodeterior. Biodegrad., 54, 203 (2004). http://dx.doi.org/10.1016/j.ibiod.2004.03.013

5. P.Meakin, Fractals, Scaling, and Growth Far from Equilibrium, Cambridge University Press, New York (1998).

6. R.Matzke, K.Jacobson, M.Radmacher, Nat. Cell Biol., 3, 607 (2001). http://dx.doi.org/10.1038/35078583

7. S.Suresh, Acta Biomater., 3, 413 (2007). http://dx.doi.org/10.1016/j.actbio.2007.04.002

8. B.Chopard, H.J.Herrmann, T.Vicsek, Nature, 353, 409 (1991). http://dx.doi.org/10.1038/353409a0

9. S.Spasic, Chaos, Solitons & Fractals, 69, 179 (2014). http://dx.doi.org/10.1016/j.chaos.2014.09.015

10. W.Klonowski, M.Pierzchalski, P.Stepien, Chaos, Solitons & Fractals, 48, 54 (2013). http://dx.doi.org/10.1016/j.chaos.2013.01.004

11. M.E.Dokukin, N.V.Guz, R.M.Gaikwad et al., Phys. Rev. Lett., 107, 028101 (2011). http://dx.doi.org/10.1103/PhysRevLett.107.028101

12. E.Spodarev, P.Straka, S.Winter, Chaos, Solitons & Fractals, 75, 134 (2015). http://dx.doi.org/10.1016/j.chaos.2015.02.011

13. G.Baumann, T.F.Nonnenmacher, in: Gli Oggetti Frattali in Astrofisica, Biologia, Fisica e Matematica, Edizioni Cerfim, Locarno,Switzerland (1989), p.93.

14. T.Nonnenmacher, in: Gli Oggetti Frattali in Astrofisica, Biologia, Fisica e Matematica, Edizioni Cerfim, Locarno, Switzerland (1989), p.64.

15. T.Nonnenmacher, G.Baumann, G.A.Losa, in: Trends in Biological Cybernetics, World Scientific,Singapore(1990),p.65.

16. T.Nonnenmacher, G.Baumann, A.Barth et al., Int. J. Biomed. Comput., 37, 131 (1993). http://dx.doi.org/10.1016/0020-7101(94)90135-X

17. G.Baumann, A.Barth, T.Nonnenmacher, in: Fractals in Biology and Medicine, Birkhauser, Boston (1994), p.182. http://dx.doi.org/10.1007/978-3-0348-8501-0_15

18. G.A.Losa, in: Fractals in Biology and Medicine, Birkhauser, Boston (1994), p.190. http://dx.doi.org/10.1007/978-3-0348-8501-0_16

19. A.Brayfield, Martindale: The Complete Drug Reference, Pharmaceutical Press (2014).

20. US Pharmacopoeia, Doxorubicin Hydrochloride, 30-th Edition (2007).

21. E.S.Cibas, B.S.Ducatman, Cytology. Diagnostic Principles and Clinical Correlated, Saunders (2009).

22. W.Arap, R.Pasqualini, E.Ruoslahti, Science, 279, 377 (1998). http://dx.doi.org/10.1126/science.279.5349.377

23. J.M.Byrne, Biogenic Magnetite Nanoparticles: Development and Optimization for Potential Applications, University of Manchester (2012).

24. J.M.Byrne, V.S.Coker, S.Moise et al., J. Royal Soc. Interface, 10, 20130134 (2013). http://dx.doi.org/10.1098/rsif.2013.0134

25. J.D.Wei, I.Knittel, C.Lang, J. Nanoparticle Res., 13, 3345 (2011). http://dx.doi.org/10.1007/s11051-011-0357-4

26. O.Yu.Gorobets, S.V.Gorobets, Yu.I.Gorobets, in: Dekker Encyclopedia of Nanoscience and Nanotechnology, Third Edition, CRC Press, New York (2014), p.300.

27. N.Yu.Lukyanova, N.V.Rusetskaya, N.V.Tregubova et al., Exp. Oncol., 31, 87 (2009).

28. B.Moore, Lakshmi Prasad Dasi, Chaos, Solitons & Fractals, 57, 19 (2013). http://dx.doi.org/10.1016/j.chaos.2013.08.005

29. M.Ciancaglini, G.Guerra, L.Agnifili, In Vivo, 29, 273 (2015).

30. G.Bianciardi, M.Agliano, N.Volpi, Microsc. Res. Tech., 78, 519 (2015). http://dx.doi.org/10.1002/jemt.22503

31. Yu.I.Gorobets, A.M.Kuchko, I.B.Vavilova, Fractal Geometry in Natural Science, Naukova Dumka, Kyiv (2008) [in Ukraine].

32. D.Necas, P.Klapetek, Central Eur. J. Phys., 10, 181 (2012).

Current number: