Funct. Mater. 2016; 23 (1): 055-062.

http://dx.doi.org/10.15407/fm23.01.055

Crystalline and thermal properties in miscible blends of PEEK, PPS and PEI obtained by melt compounding

Chen Jian-bing1, Guo Wen-he2, Li Zhun-zhun1, Tian Li-ming2

1 School of Chemistry and Materials Engineering Chizhou University, Chizhou, Anhui, 247000, P.R. China
2School of Chemistry and Chemical Enigeering Anhui University, Hefei, Anhui, 230601, P. R. China

Abstract: 

The effects of crystal and amorphous polymers on the structure, morphology, crystalline and thermal properties of PEEK have been investigated by using FT-IR, SEM, DSC and TGA. The interaction existing in PEEK/PPS and PEEK/PEI alloys was stronger than that in PEEK/PPS/PEI alloys. The SEM results revealed that homogeneous structure exists in the alloys of PEEK/PPS, PEEK/PEI and PEEK/PPS/PEI. All of the binary and ternary alloys based PEEK exhibits single glass transition temperature (Tg) in full composition range. When PEI was added to the PEEK/PPS alloys, the Tg of PEEK/PPS/PEI alloys increased from 146 °C to 179 °C. The crystallinity degree of PEEK increased when PPS was added, and decreased as PEI added. The crystallization peak of PEEK/PPS/PEI alloy disappears in the ratio of 50/25/25. The thermal decomposition temperature (Td5%) of PEEK/PPS and PEEK/PEI alloys decreased when PPS and PEI were added, the Td of PEEK/PPS/PEI alloy in the ratio of 70/15/15 presented at 510 °C, which was lower than pure PEEK and pure PEI, higher than PPS.

Keywords: 
PEEK, PPS, PEI, plastic alloys, crystallization, thermal properties.
References: 

1. D.R.Paul and J.W.Barlow, J. Macromol. Sci. C, 18, 109, 1980. http://dx.doi.org/10.1080/00222358008080917

2. R.C.Zhang, Y.Xu, Z.Y.Lu, M.Min, et.al., J. Appl. Polym. Sci., 108, 1829, 2008. http://dx.doi.org/10.1002/app.27725

3. S.M.Kurtz and J.N.Devine, Biomaterials, 28, 4845, 2007. http://dx.doi.org/10.1016/j.biomaterials.2007.07.013

4. P.J.Rae, E.N.Brown,E.B.Orler, Polymer, 48, 598, 2007. http://dx.doi.org/10.1016/j.polymer.2006.11.032

5. A.Jonas and R.Legras, Macromolecules, 26, 813, 1993. http://dx.doi.org/10.1021/ma00056a036

6. Y.M.Yang, B.Y.Li, Y.J.Zhang, et.al., J. Appl. Polym. Sci., 55, 633, 1995. http://dx.doi.org/10.1002/app.1995.070550411

7. M.Schuster, C.C.Araujo, V.Atanasov, et.al., Macromolecules, 42, 3129, 2009. http://dx.doi.org/10.1021/ma900333n

8. J.H.Yang, T.Xu, A.Lu, Q.Zhang, et.al. Compos. Sci. Technol., 69, 147, 2009. http://dx.doi.org/10.1016/j.compscitech.2008.08.030

9. A.K.Kalkar, V.D.Deshpande, M.J. Kulkarni, Polym. Engin. Sci., 49, 397, 2009. http://dx.doi.org/10.1002/pen.21263

10. S.Bicakci, M.Cakmak, Polymer, 43, 149, 2002. http://dx.doi.org/10.1016/S0032-3861(01)00607-3

11. S.D.Hudson, D.D.Davis, A.J.Lovinger, Macromolecules, 25, 1759, 2002. http://dx.doi.org/10.1021/ma00032a021

12. X.Kong, F.Teng, T.Hao, L.Dong, Polymer, 37, 1751, 1996. http://dx.doi.org/10.1016/0032-3861(96)83729-3

13. M.J.Jenkins, Polymer, 42, 1981, 2001. http://dx.doi.org/10.1016/S0032-3861(00)00438-9

14. M.J.Jenkins, Polymer, 41, 6803, 2000. http://dx.doi.org/10.1016/S0032-3861(00)00033-1

15. R.Ramani, S.Alam, Thermochim Acta, 511, 179, 2010. http://dx.doi.org/10.1016/j.tca.2010.08.012

16. R.Zhang, Y.Xu, Z.Lu, M.Min, Y. Gao, J. Appl. Polym. Sci., 108, 1829, 2008. http://dx.doi.org/10.1002/app.27725

17. K.Mai, M.Mei, J.Xu, H.Zeng, J. Appl.Polym. Sci, 63, 1001, 1997. http://dx.doi.org/10.1002/(SICI)1097-4628(19970222)63:8<1001::AID-APP6>3.3.CO;2-I

18. C.C. Ma, H.C.Hsia, W.L.Liu, J.T. Hu, Polym. Compos., 8, 256, 1987. http://dx.doi.org/10.1002/pc.750080408

19. H.Ding, Q.Zhang, Y.Tian, Y.Shi, B. Liu, J. Appl. Polym. Sci., 104, 1523, 2007. http://dx.doi.org/10.1002/app.25390

20. J.B.Chen, Q.Guo, Z.P.Zhao, et.al., J. Appl. Polym. Sci, 127, 2220, 2013. http://dx.doi.org/10.1002/app.37923

21. J.B.Chen, Z.Z.Li, X.H.Yang, J.M.Qian, Asian. J. Chem., 26, 5800, 2014.

Current number: