Funct. Mater. 2016; 23 (1): 104-110.

http://dx.doi.org/10.15407/fm23.01.104

Polishing substrates of single crystal silicon carbide and sapphire for optoelectronics

O.Yu.Filatov, V.I.Sidorko, S.V.Kovalev, Y.D.Filatov, A.G.Vetrov

V.Bakul Institute for Superhard Materials, National Academy of Sciences of Ukraine, 2 Avtozavodskaya Str., 04074 Kyiv, Ukraine

Abstract: 

As a result of research of polishing single crystal materials it is shown that the material removal rate of the processed material depends on the volumetric wear coefficient and friction path length of element of the processed surface on the surface of lapping. It is found that the polishing flat surfaces of the optoelectronic elements of single crystal silicon carbide is advantageously carried out by using polishing slurry of the powders based on MAX-phase Ti3AlC2 and colloidal nanoparticulate systems, and single crystal sapphire - using suspensions of diamond micron powders of cubic boron nitride powders and MAX-phase Ti3AlC2. Nano-polishing surfaces of elements of the single crystal sapphire should be performed using the colloidal nanoparticulate systems. It is also shown that the polishing efficiency of the single crystal silicon carbide and sapphire is inversely proportional to the transfer energy, the maximum value of which corresponds to a the minimum roughness.

Keywords: 
optoelectronic elements, polishing flat surfaces, silicon carbide, sapphire
References: 

1. Yu.D.Filatov, O.Yu.Filatov, U.Heisel et al., Proc. SPIE, 7786, 778613 (2010). http://dx.doi.org/10.1117/12.860471

2. Yu.D.Filatov, O.Yu.Filatov, G.Monteil et al., Opt. Eng., 50, 063401 (2011). http://dx.doi.org/10.1117/1.3584837

3. Y.Li, Y.Wu, J.Wang et al., Opt. Exp. 20, 568 (2012). http://dx.doi.org/10.1364/OE.20.000568

4. Y.Li, Y.Wu, L.Zhou et al., Int. J. Machine Tools and Manufact., 77, 93 (2014). http://dx.doi.org/10.1016/j.ijmachtools.2013.10.005

5. A.T.Budnikov, E.A.Vovk, V.N.Kanishchev et al., Functional Materials, 19, 478 (2012).

6. E.A.Vovk, A.T.Budnikov, S.V.Nizhankovskyi et al., Functional Materials, 20, 253 (2013). http://dx.doi.org/10.15407/fm20.02.253

7. S.Hayashi, T.Koga, M.S.Goorsky, J. Electrochem. Soc., 155, H113 (2008). http://dx.doi.org/10.1149/1.2818776

8. Y.Huaiyue, X.Xiangqian, L.Zhanhui et al., J. Semiconductors, 30, 023003 (2009). http://dx.doi.org/10.1088/1674-4926/30/2/023003

9. M.Meeder, J.Vass, C.Duncan et al., in: Proc. of CS MANTECH Conf., April 14-17, 2008, Chicago (2008).

10. Yu.D.Filatov, V.I.Sidorko, J. Superhard Mater. 27, 53 (2005).

11. Yu.D.Filatov, A.G.Vetrov, V.I.Sidorko et al., J. Superhard Mater., 35, 303 (2013). http://dx.doi.org/10.3103/S1063457613050067

12. Properties of Silicon Carbide, ed. by G.L.Harris, INSPEC, Inst. of Electr. Eng., London, United Kingdom (1995).

13. Yu.D.Filatov, A.G.Vetrov, V.I.Sidorko et al., J. Superhard Mater., 37, 48 (2015). http://dx.doi.org/10.3103/S1063457615010086

14. T.Vodenitcharova, L.C.Zhang, I.Zarudi et al., J. Mater. Proc. Techn., 194, 52 (2007). http://dx.doi.org/10.1016/j.jmatprotec.2007.03.125

15. M.Kadleikova, J.Breza, M.Vesely, Microelectronics J., 32, 955 (2001). http://dx.doi.org/10.1016/S0026-2692(01)00087-8

16. Y.Wang, S.Liu, G.Peng et al., J. Cryst. Growth., 274, 241 (2005). http://dx.doi.org/10.1016/j.jcrysgro.2004.09.074

17. B.H.Lohse, A.Salka, D.Wexlerl, J. Appl. Phys., 97, 114912 (2005). http://dx.doi.org/10.1063/1.1927282

18. N.Haddad, E.Garcia-Caurel, L.Hultman et al., J. Appl. Phys., 104, 023531 (2008). http://dx.doi.org/10.1063/1.2960340

19. A.T.Budnikov, E.A.Vovk, S.I.Krivonogov et al., Functional Materials, 17, 488 (2010).

20. E.A.Vovk, Functional Materials, 22, 110 (2015). http://dx.doi.org/10.15407/fm22.01.110

21. E.A.Vovk, Functional Materials, 22, 252 (2015). http://dx.doi.org/10.15407/fm22.02.252

22. Y.Ahn, J.-Y.Yoon, C.-W.Baek et al., Wear, 257, 785 (2004). http://dx.doi.org/10.1016/j.wear.2004.03.020

23. M.Sivanandini, S.S.Dhami, B.S.Pabla, Int. J. Engin. Res. Appl., 3, 1337 (2013).

24. W.Yan, Z.Zhang, X.Guo et al., J. Solid State Sci. Technol., 4, P108 (2015). http://dx.doi.org/10.1149/2.0241503jss

Current number: