Funct. Mater. 2016; 23 (1): 146-149.

http://dx.doi.org/10.15407/fm23.01.146

Influence of repair cost on different front energy absorbing structure to automobile low-speed impact

Liu Yanjie1,2, Ding Lin1,2, Hu Kun1, Wang Dan1

1 School of Civil Engineering, Heilongjiang University, Harbin 150086, P.R. China
2 Northeast Frost Civil Engineering Key Laboratory of Heilongjiang University, Harbin 150086, P.R. China

Abstract: 

The good Automobile front energy absorbing structure is an important part in automotive crash safety. The better performance of absorbing structure, the lighter damage of vehicles and other components, and the lower automotive collision repair cost.. In this paper, the motor vehicle energy-absorbing structure was completed by apply Finite Element (FE) method. This FE method was carried out apply the software LS-DYNA. Energy-absorbing structure of automobile usually made of thin wall metal tube. The tube was using of aluminum alloy and carbon steel material. Emphasis was focused upon discovery an optimum lateral section shape of the thin wall metal tube in order to enhance the crashworthiness. Some types of lateral section were compared and researched. Results show that the repair cost of the tube enhanced obviously when aluminum alloy lateral cross section was employed.

Keywords: 
Automobile, low velocity impact, energy absorbing structure, energy absorption characteristic, repair cost.
References: 

1. Z. W., Qiangjun Ma, Chengyu Li, J. Clean.Prod., 91, 305, 2015. http://dx.doi.org/10.1016/j.jclepro.2014.12.001

2. A. C. Croft, T. R. Eldridge, J.Chirop. Medicine, 10, 141, 2011

3. J. L. Forman, F. J. Lopez-Valdes, S. Duprey, Accid.Anal.Prev., 80, 7, 2015. http://dx.doi.org/10.1016/j.aap.2015.03.004

4. A. Ghadianlou, S. Bin Abdullah, 67, 25, 2013.

5. W. Gao, M. Zang, Eng. Anal. Bound. Elem.., 42, 2, 2014. http://dx.doi.org/10.1016/j.enganabound.2013.11.011

6. Srinivas Padala, Minh Khoi Le, Sanghoon Kook, Evatt R. Hawkes, Appl. Therm. Eng., .52, 24, 2013 http://dx.doi.org/10.1016/j.applthermaleng.2012.11.007

7. E.A. Mathews, S. Balasubramanian, T. Seacrist, et.al., J. Electromyogr. Kines, 23,1206, 2013. http://dx.doi.org/10.1016/j.jelekin.2013.06.010

8. V. Krishnan, , E.Kastrouni, V. D. Pyrialakou, et.al., Transp. Res.Part C: Emerg.Techn., 54, 131, 2015. http://dx.doi.org/10.1016/j.trc.2015.03.007

9. A. Alomari, S.Aldajah, S. Hayek, et.al., Mater. Design, 47, .836, 2013.

10. H. Chul Kim, D. Kil Shin, J. Ju Lee, J. Beom Kwon, Comp. Struct., 112, 1, 2014. http://dx.doi.org/10.1016/j.compstruct.2014.01.042

Current number: