Вы здесь

Functional Materials, 23, No.2 (2016), p.158-164.

http://dx.doi.org/10.15407/fm23.02.158

Interdiffusion under pressure in KBr-KCl single-crystals system

V.G.Kononenko1, V.V.Bogdanov1, M.A.Volosyuk2, A.V.Volosyuk2

1V. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
2Kharkiv National Automobile and Highway University, 25 Petrovskogo Str., 61002 Kharkiv, Ukraine

Abstract: 

Dependences of diffusion coefficients on pressure in the range from 1 to 6000 atm and at temperatures 450, 500, and 550°C in KBr and KCl single crystals were investigated by technique of sintering the compacts from KBr and KCl single crystals powder mixtures in the ratios providing 50 % KBr-KCl solid solution. Studying the kinetics of the solid solution formation was carried out by measuring the X-ray diffraction {200} intensity maxima depending on annealing time for the pure components. The obtained diffusion coefficient versus pressure dependences under the above-mentioned conditions indicate the observed diffusion coefficient decrease with increasing pressure (within this range) being caused by decreasing the equilibrium vacancies concentration under pressure.

Keywords: 
diffusion coefficient, alkali halide single crystals, powder sintering, pressure.
References: 

1. V.V.Skorokhod, Poroshkova Metallurgia, 9/10, 42 (2014).

2. R.A.Andrijevsky, Usp. Khim., 84, 540 (2015). http://dx.doi.org/10.1070/RCR4469

3. R.A.Andrijevsky, Usp. Fiz. Nauk, 184, 1017 (2014). http://dx.doi.org/10.3367/UFNr.0184.201410a.1017

4. O.L.Khasanov, A.S.Dvilis, Z.G.Bakbayeva, Methods for Compacting and Consolidation of Nano-Structural Materials and Products, Tomsk Polytechnical University, Tomsk (2008) [in Russian].

5. P.A.Glebovsky, Yu.V.Petrov, Phys. Solids, 46, 1021 (2004).

6. A.I.Slutsker, Phys. Solids, 46, 1606 (2004).

7. A.I.Slutsker, Phys. Solids, 47, 777 (2005).

8. V.L.Gilyarov, Phys. Solids, 47, 808 (2005).

9. M.B.Belonenko, N.G.Lebedev, S.A.Sudorgin, Zh. Tekhn. Fiz., 82, 129 (2012).

10. Yu.M.Baykov, Phys. Solids, 52, 1908 (2010).

11. A.V.Gapontsev, V.V.Kondratjev, Usp. Fiz. Nauk, 173, 1107 (2003). http://dx.doi.org/10.3367/UFNr.0173.200310c.1107

12. A.L.Bychkov, S.M.Korobeynikov, A.Yu.Ryzhkina, Zh. Tekhn. Fiz., 81, 106 (2011).

13. N.M.Vlasov, V.A.Zaznoba, J. Techn. Phys., 79, 49 (2009).

14. A.Yu.Kuksin, D.E.Smirnova, Phys. Solids, 56, 1166 (2014).

15. Y.L.Jeyachandran, S.Venkatachalam, B.Karunagaran et al., Mater. Sci. Eng., 27, 35 (2007). http://dx.doi.org/10.1016/j.msec.2006.01.004

16. G.M.Poletayev, M.D.Starostenkov, Phys. Solids, 52, 1075 (2010).

17. V.V.Alekseyenko, Phys. Solids, 50, 1775 (2008).

18. E.G.Kharina, M.D.Starostenkov, G.M.Poletayev, R.Yu.Rakitin, Phys. Solids, 53, 980 (2011).

19. Yu.I.Ustinovschikov, Usp. Fiz. Nauk, 184, 723 (2014). http://dx.doi.org/10.3367/UFNr.0184.201407b.0723

20. P.Shewmon, Diffusion in Solids, Metallurgia, Moscow (1966).

21. V.V.Bogdanov, Diffusion in Crystals, Kharkov National University named by V.Karazin, Kharkov (2006) [in Russian].

22. M.A.Volosyuk, A.V.Volosyuk, N.Ya.Rokhmanov, Functional Materials, 22, 51 (2015). http://dx.doi.org/10.15407/fm22.01.051

23. Ya.B.Zeldovich, Yu.P.Raizer, Physics of Blast Waves and High-Temperature Hydrodynamic Phenomena, Nauka, Moscow (1966) [in Russian].

Current number: