Functional Materials, 23, No.2 (2016), p.170-173.

http://dx.doi.org/10.15407/fm23.02.170

Effect of longitudinal magnetic field on the excess conductivity of monodomain YBa2Cu3O7-δ single crystals

K.V.Tiutierieva1,2, N.M.Zavgorodnya1, Ya.V.Dovgopolova1, O.O.Chernovol-Tkachenko1, R.V.Vovk1,2, A.Chroneos3

1Physics Department, V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
2Ukrainian State University of Railway Transport, 7 Feyerbaha Sq., 61050 Kharkiv, Ukraine
3Faculty of Engineering and Computing, Coventry University, 3 Gulson Str., Coventry CV1 2JH, United Kingdom

Abstract: 

In the present study influence of longitudinal magnetic field on temperature dependence of the excess conductivity in the temperature interval of transition to the superconducting state in untwinned YBa2Cu3O7-δ single crystals with optimal oxygen content are investigated. Causes of low-temperature  tails  (paracoherent transitions) in resistive transitions in the superconducting state are analyzed in the framework of implementation of various regimes of the phase state of vortex matter.

Keywords: 
excess conductivity, YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-&delta;</sub> single crystals, oxygen deficiency, pinning, 2D-3D crossover, intrinsic pinning.
References: 

1. G.Blatter, M.V.Feigel'man, V.B.Geshkenbein et al., Rev. Mod. Phys., 66, 1125 (1994). http://dx.doi.org/10.1103/RevModPhys.66.1125

2. A.V.Bondarenko, V.A.Shklovskij, R.V.Vovk et al., Low Temp. Phys., 23, 962 (1997). http://dx.doi.org/10.1063/1.593511

3. A.V.Bondarenko, A.A.Prodan, M.A.Obolenskii et al., Low Temp. Phys., 27, 339 (2001). http://dx.doi.org/10.1063/1.1374717

4. R.V.Vovk, Z.F.Nazyrov, M.A.Obolenskii et al., J. Alloys Comp., 509, 4553 (2011). http://dx.doi.org/10.1016/j.jallcom.2011.01.102

5. A.V.Bondarenko, V.A.Shklovskij, M.A.Obo-lenskii et al., Phys. Rev. B, 58, 2445 (1998). http://dx.doi.org/10.1103/PhysRevB.58.2445

6. F.Rullier-Albenque, H.Alloul, F.Balakirev, C.Proust, EPL, 81, 37008 (2008). http://dx.doi.org/10.1209/0295-5075/81/37008

7. M.V.Sadovskii, I.A.Nekrasov, E.Z.Kuchinskii et al., Phys. Rev. B, 72, 155105 (2005). http://dx.doi.org/10.1103/PhysRevB.72.155105

8. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai, O.V.Dobro-volskiy, Solid State Commun., 204, 64 (2015). http://dx.doi.org/10.1016/j.ssc.2014.12.008

9. A.Solovjov, M.Tkachenko, R.Vovk, A.Chroneos, Physica C, 501, 24 (2014). http://dx.doi.org/10.1016/j.physc.2014.03.004

10. P.Lee, N.Nagaosa, X.Wen, Rev. Mod. Phys., 78, 17 (2006). http://dx.doi.org/10.1103/RevModPhys.78.17

11. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., J. Alloys Compd., 485, 121 (2009). http://dx.doi.org/10.1016/j.jallcom.2009.05.132

12. A.V.Bondarenko, A.A.Zavgorodniy, D.A.Lotnik et al., Fiz. Nizk. Temp., 34, 645 (2008).

13. A.A.Zavgorodniy, R.V.Vovk, M.A.Obolenskii et al., Low Temp. Phys., 36, 143 (2010).

14. R.V.Vovk, V.M.Gvozdikov, M.A.Obolenskii et al., Acta Phys. Polonica A, 121, 1191 (2012). http://dx.doi.org/10.12693/APhysPolA.121.1191

15. D.D.Balla, A.V.Bondarenko, R.V.Vovk et al., Low Temp. Phys., 23, 777 (1997). http://dx.doi.org/10.1063/1.593445

16. R.V.Vovk, N.R.Vovk, O.V.Dobrovolskiy, J. Low Temp. Phys., 175, 614 (2014). http://dx.doi.org/10.1007/s10909-014-1121-9

17. R.V.Vovk, N.R.Vovk, A.V.Samoilov et al., Solid State Commun., 170, 6 (2013). http://dx.doi.org/10.1016/j.ssc.2013.07.011

18. A.Chroneos, I.L.Goulatis, R.V.Vovk, Acta Chim. Sloven., 54, 179 (2007).

19. R.V.Vovk, N.R.Vovk, O.V.Shekhovtsov et al., Supercond. Sci. Technol., 26, 085017 (2013). http://dx.doi.org/10.1088/0953-2048/26/8/085017

20. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., Mod. Phys. Lett. B, 25, 2131 (2011). http://dx.doi.org/10.1142/S0217984911027327

21. R.M.Costa, I.C.Riegel, A.R.Jurelo et al., J, Magn. Magn. Mater., 320, e493 (2008). http://dx.doi.org/10.1016/j.jmmm.2008.02.093

22. J.Giapintzakis, D.M.Ginzberg, P.D.Han, J. Low Temp. Phys, 77, 155 (1989). http://dx.doi.org/10.1007/BF00681884

23. J.S.Kouvel, M.E.Fischer, Phys. Rev., 136, A1626 (1964). http://dx.doi.org/10.1103/PhysRev.136.A1626

24. L.G.Aslamazov,A.L.Larkin, Fiz. Tverdogo Tela, 10, 3258 (1968)

25. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., Low Temp. Phys., 33, 931, (2007). http://dx.doi.org/10.1063/1.2747068

26. D.H.S.Smith, R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, Phys. Rev. B, 72, 0546506 (2005).

27. R.V.Vovk, Z.F.Nazyrov, I.L.Goulatis, A.Chroneos, Physica C, 485, 89 (2013). http://dx.doi.org/10.1016/j.physc.2012.09.017

28. D.H.S.Smith, R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, New J. Phys., 8, 128 (2006). http://dx.doi.org/10.1088/1367-2630/8/8/128

29. R.V.Vovk, G.Ya.Khadzhai, O.V.Dobrovolskiy, Appl. Phys. A, 117, 997 (2014). http://dx.doi.org/10.1007/s00339-014-8670-2

30. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., Current Appl. Phys., 14, 1779 (2014). http://dx.doi.org/10.1016/j.cap.2014.10.002

31. R.Vovk, G.Khadzhai, O.Dobrovolskiy, Mod. Phys. Lett. B, 28, 1450245 (2014). http://dx.doi.org/10.1142/S0217984914502455

Current number: