Functional Materials, 23, No.2 (2016), p.174-182.

http://dx.doi.org/10.15407/fm23.02.174

Effect of the Ba/Sr ratio on the optical properties of phosphate laser glass

A.S.Popov1, A.V.Uklein1, A.N.Zaderko2, V.A.Kozhanov2, V.V.Lisnyak2, V.Ya.Gayvoronsky1

1Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauki Ave., 03680 Kyiv, Ukraine
2Chemical Faculty, T.Shevchenko National University of Kyiv, 62a Volodymyrska Str., 01601 Kyiv, Ukraine

Abstract: 

Nonlinear optical (NLO) approach was utilized for the laser phosphate glasses characterization, being prepared by the molar substitution of Ba2 for Sr2+ at a fixed ratio of other components in a mixture of Ba1-xO/SrxO-P2O5-Al2O3-B2O3-RE2O3 (RE : Nd, La). The optical characterization of the glasses was provided by optical and FTIR spectroscopy and elastic scattering indicatrices analyses. It was shown that an efficiency of the photoinduced absorption/bleaching depends on the substitution Ba2+-Sr2+ level x due to the self-action of pulsed and CW laser radiation at wavelength 1064 nm. The proposed technique can be applied for the oxygen stoichiometry diagnostics for laser phosphate glasses. For the x = 0.25 composition it was obtained UV-vis range absorption and elastic scattering reduction within the lowest efficiencies of the NLO absorptive response under pulsed and CW laser excitation at wavelength 1064 nm. Such optical properties improvement was achieved by both the substitution level choice modification and the purification of the initial reagents.

Keywords: 
Laser phosphate glasses, Ba/Sr ratio, photoinduced absorption, cubic nonlinear optical susceptibility, UV-visible and FTIR spectra, elastic scattering indicatrix.
References: 

1. E.U. Patent 0,218,135 (1987).

2. U.S. Patent 3,979,322 (1976).

3. R.F. Patent 2,426,701 (2011).

4. U.S. Patent 5526369A (1996).

5. U.S. Patent 20,060,128,549 (2008).

6. U.S. Patent 7,435,695B2 (2008).

7. U.S. Patent 4,075,120A (1978).

8. R.D.Shannon, R.X.Fischer, Phys. Rev. B, 73, 235111 (2006). http://dx.doi.org/10.1103/PhysRevB.73.235111

9. G.Walter, U.Hoppe, A.Barz et al., J. Non-Cryst. Solids., 263-264, 48 (2000). http://dx.doi.org/10.1016/S0022-3093(99)00622-5

10. A.Paleari, V.N.Sigaev, N.V.Golubev et al., Mater. Chem. Phys., 128, 12 (2011). http://dx.doi.org/10.1016/j.matchemphys.2011.02.066

11. V.Ya.Gayvoronsky, L.A.Golovan, M.A.Kopylovsky et al., Quant. Electron. 41, 257 (2011). http://dx.doi.org/10.1070/QE2011v041n03ABEH014416

12. A.V.Uklein, A.S.Popov, V.V.Multian et al., NanoScale Res. Lett., 10, 102 (2015). http://dx.doi.org/10.1186/s11671-015-0799-1

13. V.E.Diyuk, A.N.Zaderko, K.I.Veselovska, V.V.Lisnyak, J. Thermal Anal. Calorim., 120, 1665 (2015). http://dx.doi.org/10.1007/s10973-015-4495-2

14. ASTM D854-14 (2014).

15. I.V.Dimitrov, S.Sakka, J. Appl. Phys., 79, 1736 (1996). http://dx.doi.org/10.1063/1.360962

16. J.A.Duffy, M.D.Ingram, J. Am. Chem. Soc., 93, 6448 (1971). http://dx.doi.org/10.1021/ja00753a019

17. L.S.Dent-Glasser, J.A.Duffy, J. Chem. Soc., Dalton Trans., 10, 2323 (1987). http://dx.doi.org/10.1039/DT9870002323

18. J.A.Duffy, J. Phys. Chem., 110, 13245 (2006). http://dx.doi.org/10.1021/jp063846j

19. Y.Waseda, J.M.Toguri, The Structure and Properties of Oxide Melts: Application of Basic Science to Metallurgical Processing, World Scientific Publishers, Singapore (1998). http://dx.doi.org/10.1142/3646

20. V.Ya.Gayvoronsky, A.S.Popov, M.S.Brodyn et al., in: Nanocomposites, Nanophotonics, Nanobiotechnology and Applications, Edition: Springer Proceedings in Physics 156, Springer, Cham-Heidelberg-NY (2015), p.147.

21. V.Ya.Gayvoronsky, M.A.Kopylovsky, M.S.Brodyn et al., in: Nanomaterials Imaging Techniques, Surface Studies and Applications, Edition: Springer Proceedings in Physics 146, Springer, New York, USA (2013), p.349. http://dx.doi.org/10.1007/978-1-4614-7675-7_24

22. A.B.P.Lever, Inorganic Electronic Spectroscopy. Studies in Physical and Theoretical Chemistry, Elsevier, Amsterdam (1986).

23. J.J.Garcia Sole, L.E.Bausa, D.Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids, Wiley, Chichester (2005). http://dx.doi.org/10.1002/0470016043

24. L.L.Velli, C.P.E.Varsamis, E.I.Kamitsos et al., Phys. Chem. Glasses, 46, 178 (2005).

25. H.Takebe, Y.Nageno, K.Morinaga, J. Am. Ceram. Soc. 77, 2132 (1994). http://dx.doi.org/10.1111/j.1151-2916.1994.tb07108.x

Current number: