Functional Materials, 23, No.2 (2016), p.197-201.

http://dx.doi.org/10.15407/fm23.02.197

Optical and thermal reducing of photochromic effect in Al doped Bi12SiO20 crystals

A.A.Dyachenko, T.V.Panchenko

Department of Physics, Electronics and Computer Science, O.Honchar Dnipropetrovsk National University, 72 Gagarin Ave., 49010 Dnipropetrovsk, Ukraine

Abstract: 

Results of experimental studying the processes of reversible optical and thermal reducing of the photochromic effect in Bi12SiO20:Al crystals are presented. It is shown that the optical reducing is the most effective in the region hν = 0.5 - 2 eV and at hν > 1.4 eV the reducing process passes to excitation of the photochromic effect. The thermal reducing is held in two steps with the ultimate bleaching at Th = 152 and 208 K. It is suggested the model of electron transitions such as  impurity level - band , where nonstoichiometric ions Bi5+Si (donors) and ions Al3+Si (acceptors) are responsible for impurity levels. Besides intracenter transitions in complexes [AlSiO4] make a contribution to the processes of exiting and reducing of the photochromic effect.

Keywords: 
Bi<sub>12</sub>SiO<sub>20</sub> crystals, doping, photochromic effect, optical erasure of photochromic effect, thermal erasure of photochromic effect.
References: 

1. W.Wardzynski, H.Szymzak, M.T.Borowiec, K.Pataj, J. Phys. Chem. Sol., 46, 1117 (1985). http://dx.doi.org/10.1016/0022-3697(85)90140-4

2. V.I.Burkov, A.V.Egorusheva, Yu.F.Kargin, Zh. Neorgan. Himii, 48, 620 (2003).

3. T.V. Panchenko, K.Yu.Strelets, Fiz. Tverd. Tela, 50, 1824 (2008).

4. B.C.Grabmaier, R.Oberschmid, Phys. Stat. Sol. (a), 96, 199 (1986). http://dx.doi.org/10.1002/pssa.2210960124

5. V.K.Malinovsky, O.A.Gudaev, V.A.Gusev, Photoinduced Phenomena in Sillenites, Nauka, Novosibirsk (1990) [in Russian].

6. T.V.Panchenko, A.A.Dyachenko, O.V.Khmelenko, Fiz. Tverd. Tela, 57, 753 (2015).

7. N.N.Tinh, M.T.Borowiec, J. Phys. Chem. Sol., 49, 1379 (1988). http://dx.doi.org/10.1016/0022-3697(88)90108-4

8. A.E.Attard, J. Appl. Phys., 69, 44 (1991). http://dx.doi.org/10.1063/1.347683

9. B.Briat, T.V.Panchenko, H.Bou Rjeily, A.Hamri, J. Opt. Soc. Amer., 15, 2147 (1998). http://dx.doi.org/10.1364/JOSAB.15.002147

10. T.V.Panchenko, Fiz. Tverd. Tela, 40, 452 (1998).

11. P.Petkova, B.Kostova, V.Marinova, J.Tacheva, 11th Europhys. Conf. Defects in Insulating Materials (EURODIM 2010), IOP Conf. Series: Mater.s Sci. Engin., 15 (2010), p.1.

12. A.Hamri, M.Secu, V.Topa, B.Briat, Opt. Mater., 4, 197 (1995). http://dx.doi.org/10.1016/0925-3467(94)00101-4

13. Yu.I.Ukhanov, Optical Properties of Semiconductors, Nauka, Moscow (1977) [in Russain].

14. D.N.Glebovsky, A.A.Krashennikov, M.E.Bedrina, P.I.Zalikma, Zh. Prikl. Spektr., 35, 513 (1981).

15. S.F.Radaev, V.I.Simonov, Kristallografiya, 37, 914 (1992).

16. D.Bloom, S.W.S.McKeever, J. Appl. Phys., 77, 6511 (1995). http://dx.doi.org/10.1063/1.359060

Current number: