Functional Materials, 23, No.2 (2016), p.230-235.

http://dx.doi.org/10.15407/fm23.02.230

Correlations between molecular parameters of guest substances and their effect on model lipid membranes

A.O.Sadchenko, O.V.Vashchenko, N.A.Kasian, L.V.Budianska, L.N.Lisetski

Institute for Scintillation Materials, STC  Institute for Single Crystals , National Academy of Sciences of Ukraine, 60 Lenina Ave., 61001 Kharkiv, Ukraine

Abstract: 

Effect of guests molecules on phase transitions of model lipid membranes was studied by differential scanning calorimetry. Membranotropic action of guest molecules was estimated from the shift of "gel - liquid crystal" phase transition temperature of lipid membranes. Relationships between membranotropic action and molecular parameters of guest molecules (volume, surface area, dipole moment, anisometry, lipophilicity coefficient, fraction of the polar area, etc.) were examined. For most of the lipophilic substances studied a high linear correlations between membranotropic action and lipophilicity coefficient (r = 0.86), as well as fraction of polar molecular area (r = -0.83) were established. For hydrophilic substances such correlations were not found. For groups of substances with similar chemical nature (glycerol derivatives, ammonium compounds), high linear correlations (r > 0.8) were established between membranotropic action and such molecular parameters as surface area, volume, dipole moment.

Keywords: 
liquid crystal, lipid membranes, differential scanning calorimetry, hydrofobic, hydrophilic substances.
References: 

1. G.Pabst, Biophys. Rev. Lett., 1, 57 (2006). http://dx.doi.org/10.1142/S1793048006000069

2. C.Peetla, A.Stine, V.Labhasetwar, Mol. Pharm., 6, 1264 (2009). http://dx.doi.org/10.1021/mp9000662

3. R.Pignatello, T.Musumeci, L.Basile et al., J. Pharm. Bioallied Sci., 3, 4 (2011). http://dx.doi.org/10.4103/0975-7406.76461

4. J.K.Seydel, M.Wiese, Drug-Membrane Interactions: Analysis, Drug Distribution, Modeling, Wiley-VCH Verlag GmbH & Co. KgaA (2002). http://dx.doi.org/10.1002/3527600639

5. P.V.Escriba, Trends Mol. Med., 12, 34 (2006). http://dx.doi.org/10.1016/j.molmed.2005.11.004

6. N.Fang, V.Chan, H.Q.Mao, K.W.Leong, Biomacromolecules, 2, 1161 (2001) http://dx.doi.org/10.1021/bm015548s

7. F.Tsopelasa, Th.Vallianatou, A.Tsantili-Kakoulidou, Expert Opinion on Drug Discover (2016).

doi: 10.1517/17460441.2016.1160886 http://dx.doi.org/10.1517/17460441.2016.1160886

8. Electronic resource http:/www.vcclab.org.

9. I.Moriguchi, Chem. Pharm. Bull, 40, 127 (1992). http://dx.doi.org/10.1248/cpb.40.127

10. V.N.Viswanadhan, J. Chem. Inf. Comput. Sci., 29, 163 (1989). http://dx.doi.org/10.1021/ci00063a006

11. I.V.Tetko, Drug Discov. Today, 10, 1497 (2005). http://dx.doi.org/10.1016/S1359-6446(05)03584-1

12. I.Tetko, J. Chem. Inf. Comput. Sci., 42, 1136 (2002). http://dx.doi.org/10.1021/ci025515j

13. M.Schmidt, J. Comp. Chem., 14, 1347 (1993). http://dx.doi.org/10.1002/jcc.540141112

14. Free Electronic Resource http://pubchem.ncbi.nlm.nih.gov.

15. V.G.Ivkov, G.N.Berestovski, Dynamic Structure of the Lipid Bilayer, Nauka, Moscow (1981) [in Russian].

16. T.G.Anderson, H.M.McConnell, Biophys. J., 81, 2774 (2001). http://dx.doi.org/10.1016/S0006-3495(01)75920-6

17. J.H.Ipsen, O.G.Mouritsen, M.Bloom, Biophys. J., 57, 405 (1990). http://dx.doi.org/10.1016/S0006-3495(90)82557-1

18. J.A.Veiro, P.Nambi, L.L.Herold et al., Biochim. Biophys. Acta, 900, 230 (1987). http://dx.doi.org/10.1016/0005-2736(87)90337-3

19. A.Nowacka, S.Douezan, L.Wads et al., Soft Matter., 8, 1482 (2012). http://dx.doi.org/10.1039/C1SM06273E

20. O.V.Vashchenko, Iu.L.Iermak, L.N.Lisetski, Biophysics, 58, 515 (2013). http://dx.doi.org/10.1134/S0006350913040180

21. O.V.Vashchenko, Iu.L.Iermak, A.O.Krasnikova et al., Biophysics, 60, 307 (2015). http://dx.doi.org/10.1134/S0006350915020207

22. N.A.Kasian, A.O.Krasnikova, O.V.Vashchenko et al., Biopolymers and Cell, 31, 146 (2015). http://dx.doi.org/10.7124/bc.0008DA

23. A.O.Krasnikova, O.V.Vashchenko, N.A.Kasian et al., 4th International Conference Nanobiophysics: Fundamental and Applied Aspects, Kyiv, Ukraine (2015), p.46.

24. L.N.Lisetski, O.V.Vashchenko, N.A.Kasian et al., Nanobiophysics: Fundamentals and Applications, ed. by V.A.Karachevtsev, Pan Stanford Publishing (2016).

25. T.Mavromoustakos, P.Chatzigeorgiou, C.Koukoulitsa et al., Intern. J. Quant. Chem., 111, 1172 (2011). http://dx.doi.org/10.1002/qua.22610

26. L.N.Lisetski, L.N.Zavora, N.A.Kasian et al., Mol. Cryst. Liq. Cryst., 510, 1240 (2009).

27. O.Vashchenko, V.Pashynska, M.Kosevich et al., Mol. Cryst. Liq. Cryst., 507, 155 (2011).

28. O.V.Vashchenko, A.O.Krasnikova, N.A.Kasian et al., VI convention of UBFT, Lutsk-Svityaz, Ukraine (2015), p.41.

29. K.D.Collins, Methods, 34, 300 (2004). http://dx.doi.org/10.1016/j.ymeth.2004.03.021

30. J.A.Killian, Biochim. Biophys. Acta., 1376, 401 (1998). http://dx.doi.org/10.1016/S0304-4157(98)00017-3

31. A.Helenius, K.Simons, Biochim. Biophys. Acta, 415, 29 (1975). http://dx.doi.org/10.1016/0304-4157(75)90016-7

Current number: