Functional Materials, 23, No.2 (2016), p.249-254.

http://dx.doi.org/10.15407/fm23.02.249

Modification of sintered iron properties by Y2O3 nanoparticles

M.I.Cherednyk, O.Yu.Popov, S.V.Chornobuk, I.M.Totsky, M.P.Semenko, O.I.Boshko, V.Ja.Tkachuk, Y.V.Slobodianyk, S.M.Naumenko, V.A.Makara

Department of Physics of Metals, Faculty of Physics, T.Shevchenko National University of Kyiv, 4 Glushkova Ave., 03680 Kyiv, Ukraine

Abstract: 

Influence of Y2O3 nanoparticles on sintered iron structure and microhardness is investigated. Ferrite grain growth is shown to be slowed down by the clusters which cause altering the grain shape from needle-like to equiaxial (with lower specific surface). Yttrium oxide particles resulted microhardness increasing to 3.6 GPa at 1 % of second phase content. The fact is explained by retardation of dislocations on disperse particles by the Orowan mechanism.

Keywords: 
powder metalurgy, yttrium oxide, steel, microhardness, structure.
References: 

1. R.Gao, T.Zhang, H.L.Ding et al., J. Nucl. Mater., 465, 268 (2015). http://dx.doi.org/10.1016/j.jnucmat.2015.05.038

2. R.Lindau, A.Moslang, M.Schirra et al., J. Nucl. Mater., 307, 769 (2002). http://dx.doi.org/10.1016/S0022-3115(02)01045-0

3. V.V.Brik, V.N.Voevodin, A.S.Kalchenko et al., Probl. Sci. Tech., 2(84), 22 (2013).

4. J.Brodrick, D.J.Hepburn, G.J.Ackland, J. Nucl. Mater., 445, 291 (2014). http://dx.doi.org/10.1016/j.jnucmat.2013.10.045

5. E.Cayron, I.Rath, S.Chu, C.Launois, J. Nucl. Mater, 335, 83 (2004). http://dx.doi.org/10.1016/j.jnucmat.2004.06.010

6. V.N.Voevodin, V.I.Karas, A.O.Komarov et al., Probl. Sci. Tech., 6, 157 (2011).

7. V.V.Svetukhin, O.G.Sidorenko, University Proc., Volga Region, Phys. and Math. Sci., 2, 49 (2007).

8. A.M.Parshin, Probl. at Sci. Tech., 4, 20 (1980).

9. Y.C.Cai, R.P.Liu, Y.H.Wei, Z.G.Cheng, Mater. Design, 62, 83 (2014). http://dx.doi.org/10.1016/j.matdes.2014.02.057

10. Z.Oksiuta, M.Lewandowska, P.Unifantowicz et al., Fusion Eng. Des., 86, 2417 (2011). http://dx.doi.org/10.1016/j.fusengdes.2011.01.023

11. D.Sakuma, S.Yamashita, K.Oka et al., J. Nucl. Mater., 329-333, 392 (2004). http://dx.doi.org/10.1016/j.jnucmat.2004.04.039

12. R.Schaublin, A.Ramar, N.Baluc et al., J. Nucl. Mater., 351, 247 (2006). http://dx.doi.org/10.1016/j.jnucmat.2006.02.005

13. V.I.Solomonov, V.V.Osipov, V.A.Shitov, K.E.Lukjashin, News Instit High Educat, Phys., 1/3, 224 (2001).

14. V.I.Moschenok, N.A.Lalazarova, O.N.Timchenko, Bull. Kharkov National Automobile and Highway University, 42, 83 (2008).

15. K.Kitayama, M.Sakaguchi, Y.Takahara, J. Solid. State. Chem., 177, 1933 (2004). http://dx.doi.org/10.1016/j.jssc.2003.12.040

16. A.P.Gulyaev, Metal Science. Mechanical Engineering, Moscow (1986) [in Russian].

17. P.A.Vityaz et al., Powder Materials Based on Iron and Copper, Atlas Structures, Powder Metallurgy Institute, The Belarusian Science, Minsk (2008) [in Russian].

18. J.P.Kaushis, Manufacturing Processes, PHI Private Limited, New Delhi (2010).

19. K.M.Islamkulov, G.T.Aimenov, D.U.Smagulov, in: Conference Proc., Adv. Modern Nature Sci. Rec., vol.10 (2014), p.73.

20. D.V.Leleko, G.N.Tregubenko, G.A.Poliakov, Metallurgy, 1, 36 (2014).

21. G.Triantafyllou, G.N.Angelopoulos, P.Nikolopoulos, J. Mater. Sci., 45, 2015 (2010). http://dx.doi.org/10.1007/s10853-009-4013-7

22. R.Gaboriaud, M.Boisson, J. de Phys. Colloques, 41, 171 (1980). http://dx.doi.org/10.1051/jphyscol:1980644

23. N.M.Beliaev, Strength of Materials, Science, Moscow (1965) [in Russian].

Current number: