Funct. Mater. 2016; 23 (3): 357-363.

http://dx.doi.org/10.15407/fm23.03.357

Influence of Se vacancies on the electron energy spectrum transformation of 2H-NbSe2

A.A.Mamalui, O.N.Andreeva, A.V.Sinelnik

National Technical University "Kharkiv Polytechnic Institute", 21 Frunze Str., 61002 Kharkiv, Ukraine

Abstract: 

The results of density functional calculations of 2H-NbSe2 electron energy spectrum with Se vacancies at various concentrations are presented in the article. It is found that volume of the hole-like Fermi surface tends to decrease with increasing concentration of the vacancies. At vacancy concentrations corresponding to the beginning of the phase transition 2H-NbSe2 -> 4H-NbSe2 the disappearance of carrier group occurs, that is an electronic topological transition of order 2.5 takes place.

Keywords: 
2H-NbSe<sub>2</sub>, single crystals, electron energy, vacancies concentrations.
References: 

1. O.N.Andreeva, I.S.Braude, A.A.Mamalui, Phys. Met. Metallography, 113, 9 (2012).
http://dx.doi.org/10.1134/S0031918X12010085
 
2. A.A.Mamalui, T.N.Shelest, N.B.Fatyanova et al., Functional Materials, 12, 521 (2005).
 
3. A.C.Damask, G.J.Dienes, Point Defects in Metals, Gordon and Breach, New York (1963).
 
4. N.F.Mott, Metal-insulator Transitions, Taylor & Francis Ltd., London (1974).
 
5. L.F.Mattheiss, Phys. Rev. Lett., 30, 784 (1973).
http://dx.doi.org/10.1103/PhysRevLett.30.784
 
6. L.F.Mattheiss, Phys. Rev. B, 8, 3719 (1973).
http://dx.doi.org/10.1103/PhysRevB.8.3719
 
7. C.Y.Fong, Marvin L.Cohen, Phys. Rev. Lett., 32, 720 (1974).
http://dx.doi.org/10.1103/PhysRevLett.32.720
 
8. G.Wexler, A.M.Woolley, J. Phys. C: Solid State Phys., 9, 1185 (1976).
http://dx.doi.org/10.1088/0022-3719/9/7/010
 
9. J.Brandt, J.Kanzow, K.Robnagel et al., HASYLAB Annual Report (2000).
 
10. T.Yokoya, T.Kiss, A.Chainani et al., Science, 294, 2518 (2001).
http://dx.doi.org/10.1126/science.1065068
 
11. E.E.Krasovskii, W.Schattke, V.N.Strocov, R.Claessen, Phys. Rev. B, 66, 235403 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.235403
 
12. T.Kiss, T.Yokoya, A.Chainani et al., Physica B, 312, 666 (2002).
http://dx.doi.org/10.1016/S0921-4526(01)01293-5
 
13. M.D.Johannes, I.I.Mazin, C.A.Howells, Phys. Rev. B, 73, 205102 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.205102
 
14. D.S.Inosov, V.B.Zabolotnyy, D.V.Evtushinsky et al., New J. Phys., 10, 125027 (2008).
http://dx.doi.org/10.1088/1367-2630/10/12/125027
 
15. S.Lebegue, O.Eriksson, Phys. Rev. B, 79, 115409 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.115409
 
16. V.Sirenko, A.Gasparini, A.de Visser et al., J. Phys.:Conf. Ser., 150, 042185 (2009).
http://dx.doi.org/10.1088/1742-6596/150/4/042185
 
17. S.V.Borisenko, A.A.Kordyuk, V.B.Zabolotnyy et al., Phys. Rev. Lett., 102, 166402 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.166402
 
18. S.V.Borisenko, A.A.Kordyuk, V.B.Zabolotnyy et al., J. Phys. Chem. Solids, 72, 562 (2011).
http://dx.doi.org/10.1016/j.jpcs.2010.10.063
 
19. V.L.Kalikhman, Y.S.Umanskiy, Usp. Fiz. Nauk, 108, 503 (1972).
http://dx.doi.org/10.3367/UFNr.0108.197211d.0503
 
20. A.Gulans, S.Kontur, C.Meisenbichler et al., J. Phys.:Condens. Matter, 26, 363202 (2014).
http://dx.doi.org/10.1088/0953-8984/26/36/363202
 
21. J.P.Perdew, A.Ruzsinszky, G.I.Csonka et al., Phys. Rev. Lett., 100, 136406 (2008); Erratum Phys. Rev. Lett., 102, 039902 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.039902
 
22. M.Marezio, P.D.Dernier, A.Menth, G.W.Hull Jr., J. Solid State Chemistry, 4, 425 (1972).
http://dx.doi.org/10.1016/0022-4596(72)90158-2
 
23. I.M.Lifshitz, M.Y.Azbel, M.I.Kaganov, Elektronnaya Teoriya Metallov, Nauka, Moscow (1971) [in Russian].
 
24. O.N.Andreeva, Tochechnye Defekty v Kristallicheskikh Sistemakh Razlichnoy Razmernosti (3D - PbIn; 2D - NbSe2), Diss. Kandidata Fiz.-mat. Nauk, Kharkiv (2014).
 

Current number: