Funct. Mater. 2016; 23 (3): 370-377.

http://dx.doi.org/10.15407/fm23.03.370

Effect of pressure on paraconductivity in HoBa2Cu3O7-δ single crystals with oxygen deficiency

K.V.Tiutierieva1,2, Ya.V.Dovgopolova1, O.O.Chernovol-Tkachenko1, I.L.Ivrij1, R.V.Vovk1,2, S.I.Prihod'ko2

1V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
2Ukrainian State University of Railway Transport, 7 Feyerbaha Sq., 61050 Kharkiv, Ukraine

Abstract: 

In this work, we have investigated the effect of high pressure on conductivity in basal plane of the high temperature super conducting single crystals HoBa2Cu3O7-δ with oxygen deficiency. It has been determined that the excess conductivity Δσ(T) of HoBa2Cu3O7-δsingle crystals in temperature interval near the critical temperature (Tc) is described within the framework of the Aslamazov-Larkin theoretical model. It has been shown that evolution of the transverse coherence length ξc(0) in the case of application/removal of the high pressure is largely determined by the "relaxation" pressure effect during prolonged exposure of the sample under load at the room temperature.

Keywords: 
excess conductivity, hydrostatic pressure, YBaCuO single crystals, high-temperature superconductivity, crossover, pseudogap state.
References: 

1. A.Larkin, A.Varlamov, Theory of Fluctuations in Superconductors, Oxford University Press, USA (2009).
 
2. T.A.Friedman, J.P.Rice, J.Giapintzakis et al., Phys. Rev. B, 39, 4258 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.4258
 
3. A.L.Solovjov, M.A.Tkachenko, R.V.Vovk et al., Physica C, 501, 24 (2014).
http://dx.doi.org/10.1016/j.physc.2014.03.004
 
4. R.V.Vovk, G.Ya.Khadzhai, I.L.Goulatis et al., Physica B, 436, 88 (2014).
http://dx.doi.org/10.1016/j.physb.2013.11.056
 
5. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., J. Mater. Sci.:Mater. Electron., 26, 1435 (2015).
http://dx.doi.org/10.1007/s10854-014-2558-y
 
6. J.Ashkenazi, J.Supercond. Nov. Magn., 24, 1281 (2011).
http://dx.doi.org/10.1007/s10948-010-0823-8
 
7. E.Babaev, H.Kleinert, Phys. Rev. B, 59, 12083 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.12083
 
8. G.D.Chryssikos, E.I.Kamitsos, J.A.Kapoutsis et al., Physica C, 254, 44 (1995).
http://dx.doi.org/10.1016/0921-4534(95)00553-6
 
9. A.Chroneos, I.L.Goulatis, R.V.Vovk, Acta Chim. Slovenica, 54, 179 (2007).
 
10. L.Mendonca Ferreira et al., Phys. Rev. B, 69, 212505 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.212505
 
11. R.V.Vovk,G.Ya.Khadzhai, O.V.Dobrovolskiy et al., Physica C, 516, 58 (2015).
http://dx.doi.org/10.1016/j.physc.2015.06.011
 
12. G.Blatter, M.V.Feigel<$E prime>man, V.B.Geshkenbein et al., Rev. Mod. Phys., 66, 1125 (1994).
http://dx.doi.org/10.1103/RevModPhys.66.1125
 
13. L.Mendonca Ferreira et al., Eur. Phys. J. B, 83, 423 (2011).
http://dx.doi.org/10.1140/epjb/e2011-20527-9
 
14. S.V.Savich, A.V.Samoilov, R.V.Vovk et al., Mod. Phys. Lett. B, 30, 1650034 (2016).
http://dx.doi.org/10.1142/S0217984916500342
 
15. L.G.Aslamazov, A.I.Larkin, Phys. Lett. A, 26, 238 (1968).
http://dx.doi.org/10.1016/0375-9601(68)90623-3
 
16. P.A.Lee, N.Nagaosa, X.G.Wen, Rev. Mod. Phys., 78, 17 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.17
 
17. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., J. Alloys Compd., 485, 121 (2009).
http://dx.doi.org/10.1016/j.jallcom.2009.05.132
 
18. M.K.Wu, J.R.Ashburn, C.J.Torng et al., Phys. Rev. Lett., 58, 908 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.908
 
19. P.Schleger et al., Physica C, 176, 261 (1991).
http://dx.doi.org/10.1016/0921-4534(91)90722-B
 
20. M.A.Obolenskii, R.V.Vovk, A.V.Bondarenko et al., Low Temp. Phys., 32, 571 (2006).
http://dx.doi.org/10.1063/1.2215373
 
21. M.Akhavan, Physica B, 321, 265 (2002).
http://dx.doi.org/10.1016/S0921-4526(02)00860-8
 
22. R.V.Vovk, Z.F.Nazyrov, I.L.Goulatis et al., Physica C, 485, 89 (2013).
http://dx.doi.org/10.1016/j.physc.2012.09.017
 
23. J.L.Tallon, C.Berbhard, H.Shaked et al., Phys. Rev. B, 51, 12911 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.12911
 
24. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., Solid State Commun., 190, 18 (2014).
http://dx.doi.org/10.1016/j.ssc.2014.04.004
 
25. T.Krekels, H.Zou, G.VanTendelooet al., Physica C, 196, 363 (1992).
http://dx.doi.org/10.1016/0921-4534(92)90458-O
 
26. A.V.Bondarenko, V.A.Shklovskij, M.A.Obolenskii et al., Phys. Rev. B, 58, 2445 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.2445
 
27. H.A.Borges, M.A.Continentino, Solid State Commun., 80, 197 (1991).
http://dx.doi.org/10.1016/0038-1098(91)90180-4
 
28. R.V.Vovk, N.R.Vovk, G.Y.Khadzhai et al., Curr. Appl. Phys., 14, 1779 (2014).
http://dx.doi.org/10.1016/j.cap.2014.10.002
 
29. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., Solid State Commun., 204, 64 (2015).
http://dx.doi.org/10.1016/j.ssc.2014.12.008
 
30. J.Kircher, M.Cardona, A.Ziboldet al., Phys. Rev. B, 48, 9684 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.9684
 
31. R.V.Vovk, N.R.Vovk, O.V.Dobrovolskiy, J. Low Temp. Phys., 175, 614 (2014).
http://dx.doi.org/10.1007/s10909-014-1121-9
 
32. J.D.Jorgencen, P.Shiyou, P.Lightfoot et al., Physica C, 167, 571 (1990).
http://dx.doi.org/10.1016/0921-4534(90)90676-6
 
33. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., J. Mater. Sci.:Mater. Electron., 25, 5226 (2014).
http://dx.doi.org/10.1007/s10854-014-2292-5
 
34. S.Sadewasser, J.S.Schilling, A.P.Paulicas et al., Phys. Rev. B, 61, 741 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.741
 
35. D.D.Balla, A.V.Bondarenko, R.V.Vovk et al., Low Temp. Phys., 23, 777 (1997).
http://dx.doi.org/10.1063/1.593445
 
36. B.W.Veal, H.You, A.P.Paulicas et al., Phys. Rev. B, 42, 4770 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.4770
 
37. M.A.Obolenskii, A.V.Bondarenko, R.V.Vovk et al., Low Temper. Phys., 23, 882 (1997).
http://dx.doi.org/10.1063/1.593496
 
38. B.Martinez, F.Sandiumenge, S.Pinol et al., Appl. Phys. Lett., 66, 772 (1995).
http://dx.doi.org/10.1063/1.114089
 
39. Z.F.Nazyrov, A.V.Popova, R.V.Vovk, Functional Materials, 21, 394 (2014).
http://dx.doi.org/10.15407/fm21.04.394
 
40. R.V.Vovk, N.R.Vovk, A.V.Samoilov et al., Solid State Commun., 170, 6 (2013).
http://dx.doi.org/10.1016/j.ssc.2013.07.011
 
41. R.Menegotto Costa et al., Physica C, 495, 202 (2013).
http://dx.doi.org/10.1016/j.physc.2013.09.015
 
42. R.V.Vovk, G.Ya.Khadzhai, Z.F.Nazyrovet al., Physica B, 407, 4470 (2012).
http://dx.doi.org/10.1016/j.physb.2012.07.049
 
43. A.M.Kosevich, Usp. Fiz. Nauk, 114, 507 (1974).
 
44. R.V.Vovk, Z.F.Nazyrov, M.A.Obolenskii et al., Philosoph. Mag., 91, 2291 (2011).
http://dx.doi.org/10.1080/14786435.2011.552893
 
45. H.Lutgemeier, S.Schmenn, P.Meuffels et al., Physica C, 267, 191 (1996).
http://dx.doi.org/10.1016/0921-4534(96)00380-2
 
46. R.V.Vovk, Z.F.Nazyrov, M.A.Obolenskii, J. Alloys and Comp., 509, 4553 (2011).
http://dx.doi.org/10.1016/j.jallcom.2011.01.102
 
47. A.Chroneos et al., J. Alloys Compd., 494, 190 (2010).
http://dx.doi.org/10.1016/j.jallcom.2010.01.071
 
48. R.V.Vovk,G.Ya.Khadzhai, O.V.Dobrovolskiy et al., Curr. Appl. Phys., 15, 617 (2015).
http://dx.doi.org/10.1016/j.cap.2015.02.016
 
49. D.M.Ginsberg (ed.), Physical Properties High Temperature Superconductors, Word Scientific, I.-Singapore, (1989).
 
50. R.Griessen, Phys. Rev. B, 36, 5284 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.5284
 
51. G.Ya.Khadzhai, N.R.Vovk, R.V.Vovk et al., Functional Materials, 22, 5 (2015).
http://dx.doi.org/10.15407/fm22.01.005
 
52. G.Lacayc, R.Hermann, G.Kaestener, Physica C, 192, 207 (1992).
http://dx.doi.org/10.1016/0921-4534(92)90762-2
 
53. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., Modern Phys. Lett. B, 25, 2131 (2011)
http://dx.doi.org/10.1142/S0217984911027327
 
54. A.V.Bondarenko, V.A.Shklovskij, R.V.Vovk et al., Low Temp. Phys., 23, 962 (1997).
http://dx.doi.org/10.1063/1.593511
 
55. R.V.Vovk, M.A.Obolenskii, Z.F.Nazyrov, J. Mater Sci.:Mater. Electron., 23, 1255 (2012).
http://dx.doi.org/10.1007/s10854-011-0582-8
 
56. R.V.Vovk, I.L.Goulatis, A.Chroneos, J. Mater Sci.:Mater. Electron., 24, 5127 (2013).
http://dx.doi.org/10.1007/s10854-013-1534-2
 
57. W.E.Lawrence, S.Doniach, in: Proc. 12th Intern. Conf. Low Temperature Physics, Kyoto, Japan, 1970, ed. by E.Kanda, Keigaku, Tokyo (1970), p.361.
 
58. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., J. Alloys Comp., 453, 69 (2008).
http://dx.doi.org/10.1016/j.jallcom.2006.11.169
 
59. A.A.Zavgorodniy, R.V.Vovk, M.A.Obolenskii et al., Functional Materials, 17, 143(2010).
 
60. A.V.Bondarenko, A.A.Prodan, M.A.Obolenskii et al., Low Temper.Exper.., 27, 339 (2001).
http://dx.doi.org/10.1063/1.1374717
 
61. E.S.Ickevich, Pribory Technica Exper., 4, 148 (1963).
 
62. R.V.Vovk, N.R.Vovk, O.V.Shekhovtsov et al., Supercond. Sci. Technol., 26, 085017 (2013).
http://dx.doi.org/10.1088/0953-2048/26/8/085017
 
63. D.H.S.Smith, R.V.Vovk, C.D.H.Williams et al., New J. Phys., 8, 128 (2006).
http://dx.doi.org/10.1088/1367-2630/8/8/128
 
64. R.V.Vovk, G.Ya.Khadzhai, O.V.Dobrovolskiy, Appl. Phys. A, 117, 997 (2014).
http://dx.doi.org/10.1007/s00339-014-8670-2
 
65. D.H.S.Smith, R.V.Vovk, C.D.H.Williams et al., Phys. Rev. B, 72, 054506 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.054506
 
66. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., Physica B, 422, 33 (2013).
http://dx.doi.org/10.1016/j.physb.2013.04.032
 
67. R.V.Vovk,G.Ya.Khadzhai, O.V.Dobrovolskiy, Mod. Phys. Lett. B, 28, 1450245 (2014).
http://dx.doi.org/10.1142/S0217984914502455
 
68. P.G.DeGennes, Superconductivity of Metals and Alloys, W.A.Benjamin Inc., New York-Amsterdam (1966).

Current number: