Funct. Mater. 2016; 23 (3): 387-393.

http://dx.doi.org/10.15407/fm23.03.387

Bi nanolines characterization by linear optical methods

V.V.Buchenko, A.A.Goloborodko

T.Shevchenko National University of Kyiv,64/13 Volodymyrska Str., 01601 Kyiv, Ukraine

Abstract: 

The present paper dedicated to experimental investigations of optical properties of Bi/Si(001) interfaces and Bi nanolines in a wide spectral range (1eV). The experimental study of optical absorption spectrum showed the widening of the optical band gap of Bi/Si(001) interfaces with increasing the bismuth coverage, whereas after nanolines formation the width of the optical band gap decreases. Features of the experimentally obtained reflectance anisotropy spectra and surface differential reflectance spectra concerned with changing of the silicon surface reconstruction from 2x1 to 1x1 with the increasing of the bismuth covering degree from 0.5 ML to 1 ML. The experimental study of reflectance anisotropy spectra and surface differential reflectance spectra of Bi nanolines shows that the bismuth atoms are still present on the surface of the substrate in small amount, but the optical properties of such structures are determined by Si dimers.

Keywords: 
bismuth, reflectance anisotropy spectroscopy, surface differential reflectance spectroscopy, adsorption, silicon.
References: 

1. D.J.Eaglesham, M.Cerullo, Phys. Rev. Lett., 64, 1943 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.1943
 
2. N.V.Nguyen, D.Chandler-Horowitz, P.M.Amirtharaj, J.G.Pellegrino, Appl. Phys. Lett., 64, 2688 (1994).
http://dx.doi.org/10.1063/1.111492
 
3. L.Fazi, C.Hogan, L.Persichetti et al., Phys. Rev. B, 88, 195312 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.195312
 
4. J.Wang, Z.Huang, H.Duan et al., Acta Mechanica Solida Sinica, 24, 52 (2011).
http://dx.doi.org/10.1016/S0894-9166(11)60009-8
 
5. A.Hidehito, Y.Tatsuya, Y.Kenji et al., Surf. Sci., 609, 157 (2003).
 
6. T.V.Afanasieva, I.F.Koval, N.G.Nakhodkin, Surf. Sci., 507, 787 (2002)
 
7. W.Dorsch, S.Christiansen, M.Albrecht et al., Surf. Sci., 331-333, 896 (1995).
http://dx.doi.org/10.1016/0039-6028(95)00152-2
 
8. T.V.Afanasieva, Ukr. J. Phys., 60, 130 (2015).
http://dx.doi.org/10.15407/ujpe60.02.0130
 
9. M.Richter, J.C.Woicik, J.Nogami et al., Phys. Rev. Lett., 65, 3417 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.3417
 
10. J.Nogami, A.A.Baski, C.F.Quate, Appl. Phys. Lett., 58, 475 (1991).
http://dx.doi.org/10.1063/1.104612
 
11. D.H.Rich, F.M.Leibsle, A.Samsavar et al., Phys. Rev. B, 39, 12758 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.12758
 
12. I.F.Koval, P.V.Melnik, N.G.Nakhodkin et al., Surf. Sci., 331-333, 585 (1995).
http://dx.doi.org/10.1016/0039-6028(95)00322-3
 
13. I.F.Koval, P.V.Melnik, N.G.Nakhodkin et al., Surf. Sci., 384, L844 (1997).
http://dx.doi.org/10.1016/S0039-6028(97)00285-9
 
14. T.Bork, W.E.McMahon, J.M.Olson, T.Hannappel, J. Cryst. Growth, 298, 54 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.10.048
 
15. V.A.Funtikov, N.E.Antonova, Glass Phys. Chem., 33, 183 (2007).
http://dx.doi.org/10.1134/S1087659607020150
 
16. A.Sassella, A.Borghesi, M.Campione et al., Appl. Phys. Lett., 89, 261905 (2006).
http://dx.doi.org/10.1063/1.2423322
 
17. C.Noguez, C.Beitia, W.Preyss et al., Phys. Rev. Lett, 76, 4923 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.4923
 
18. O.Pluchery, R.Coustel, N.Witkowski, Y.Borensztein, J. Phys. Chem. B, 110, 22635 (2006).
http://dx.doi.org/10.1021/jp063988d
 
19. Y.Borensztein, Phys. Status Solidi (A), 202, 1313 (2005).
http://dx.doi.org/10.1002/pssa.200460915
 
20. M.Palummo, G.Onida, R.Del Sole, B.S.Mendoza, Phys. Rev. B, 60, 2522 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.2522
 
21. T.Yasuda, M.Nishizawa, N.Kumagai et al., Thin Solid Films, 455-456, 759 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.11.262
 
22. L.Mantese, U.Rossow, D.E.Aspnes, Appl. Surf. Sci., 107, 35 (1996).
http://dx.doi.org/10.1016/S0169-4332(96)00479-5
 
23. J.D.O'Mahony, J.F.McGilp, F.M.Leibsle et al., Semicond. Sci. Technol., 8, 495 (1993).
http://dx.doi.org/10.1088/0268-1242/8/4/003
 
24. R.Ehlert, J.Kwon, M.C.Downer, Phys. Status Solidi (C), 5, 2551 (2008).
http://dx.doi.org/10.1002/pssc.200779124
 
25. K.Miki, J.H.G.Owen, D.R.Bowler et al., Surf. Sci., 421, 397 (1999).
http://dx.doi.org/10.1016/S0039-6028(98)00870-X
 
26. A.A Goloborodko, M.V.Epov, L.Y.Robur, T.V.Rodionova, J. Nano-Electron. Phys., 6, 020021 (2014).
 
27. T.V.Rodionova, A.S.Sutyagina, A.G.Gumenyuk, L.Y.Robur, J. Nano- and Electron. Phys., 7, 01033 (2015).
 
28. J.D.E.McIntyre, D.E.Aspnes, Surf. Sci., 24, 417 (1971).
http://dx.doi.org/10.1016/0039-6028(71)90272-X
 
29. V.V.Buchenko, A.A.Goloborodko, in: Proc. SPIE 9809, Twelfth Intern. Conf. Correlation Optics, Chernivtsi, Ukraine (2015), p.98090N-1.
 
30. Y.Borensztein, O.Pluchery, N.Witkowski, Phys. Rev. Lett. 95, 1174021 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.117402
 
31. D.R.Bowler, J.H.G.Owen, J. Phys.:Condens. Matter 14, 6761 (2002).
http://dx.doi.org/10.1088/0953-8984/14/26/314
 
32. J.H.G.Owen, K.Miki, H.Koh, Phys. Rev. Lett., 88, 226104 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.226104
 
33. D.E.Aspnes, A.A.Studna, Phys. Rev. Lett., 54, 1956 (1985).
http://dx.doi.org/10.1103/PhysRevLett.54.1956
 
34. H.Touir, P.Roca i Cabarrocas, Phys. Rev. B, 65, 155330 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.155330
 
35. A.P.Lenham, D.M.Treherne, R.J.Metcalfe, J. Opt. Soc. Am., 55, 1072 (1965).
http://dx.doi.org/10.1364/JOSA.55.001072
 
36. P.Y.Wang, A.L.Jain, Phys. Rev. B, 2, 2978 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.2978
 
37. V.V.Buchenko, A.A.Goloborodko, T.V.Afanasieva, Materialwissenschaft und Werkstofftechnik, 47, 120 (2016).
http://dx.doi.org/10.1002/mawe.201600479
 
38. S.A.Kovalenko, M.P.Lisitsa, Semicond. Phys., Quant. Electron. & Optoelectron., 4, 352 (2001).
 
39. L.V.Poperenko, A.A.Goloborod'ko, N.V.Epov, J. Appl. Spectr., 82, 744 (2015).
http://dx.doi.org/10.1007/s10812-015-0174-0
 
40. P.Y.Yu, M.Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, Springer, Berlin, Heidelberg (1996).
http://dx.doi.org/10.1007/978-3-662-03313-5
 
41. W.G.Schmidt, S.Glutsch, P.H.Hahn, F.Bechstedt, Phys. Rev. B, 67, 853071 (2003).
 
42. C.Hogan, R.Del Sole, G.Onida, Phys. Rev. B, 68, 354051 (2003).
 
43. A.Hermann, W.G.Schmidt, F.Bechstedt, Phys. Rev. B, 71, 1533111 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.153311
 
44. W.G.Schmidt, F.Bechstedt, J. Bernholc, Phys. Rev. B, 63, 045322 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.045322
 
45. S.G.Jaloviar, Jia-Ling Lin, Feng Liu et al., Phys. Rev. Lett., 82, 791 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.791
 
46. R.Shioda, J. van der Weide, Phys. Rev. B, 57, R6823 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.R6823

Current number: