Funct. Mater. 2016; 23 (3): 450-456.

http://dx.doi.org/10.15407/fm23.03.450

Mechanical-magneto coupled model of polymer-bonded magnetostrictive composites

Ran Zhao1,2, Bowen Wang1, Yafang Li1, Shuying Cao1, Jianwu Yan2

1Department of Power Electrical Engineering, Hebei University of Technology, Tianjin, 220000, China
2Jiangxi Province Key Laboratory of Precision Drive and Control, Nanchang Institute of Technology, Nanchang, 330099, China

Abstract: 

In order to accurately predict the magneto-elastic property of polymer-bonded magnetostrictive materials, a new mechanical-magneto coupled nonlinear model is proposed in this paper. In the proposed model, the total strain of the composites is expressed by the matrix strain, magnetostriction eyestrains and strain concentration factors. Firstly, the interaction between the matrix and inclusion phase of the magnetostrictive composites is analyzed and the strain concentration factors are calculated with the Mori-Tanaka mean field method. Then, the magnetization process of the composites is analyzed in detail according to the demagnetizing field theory. Finally, the proposed model of magnetostrictive composites is obtained. Furthermore, in order to verify the proposed model, the performance of the magnetostrictive composites is tested, and the theoretical calculations are also compared with the experimental data. The results show that the given model can greatly simulate the stress concentration and precisely predict the magnetostrictive coefficient, saturation magnetostrictive coefficient as well as the magnetization of the composites.

Keywords: 
Magnetostrictive composites, Mechanical-magneto coupled model, demagnetization field, Mori-Tanaka method
References: 

1. S.H. Lim, S.R. Kim, S.Y. Kang, et al., J. Mag. Mag. Mater., 113, 1999.
 
2. N. Nersessian, S.W. Or, G. P Carman. J. Mag. Mag. Mater. 263,101, 2003,
http://dx.doi.org/10.1016/S0304-8853(02)01542-1
 
3. L. R. Angulo, J.S. Abell, I.R. Harris. J. Mag. Mag. Mater., 157, 508, 1996.
http://dx.doi.org/10.1016/0304-8853(95)01088-2
 
4. Li Shuying, Wang Bowen, Weng Ling, J. Hebei Univ.Techn., 34, 142005, 2004.
 
5. S.M. Na, S. J. Suh, K. H. Shin, S.H. Lim, J. Mag. Mag. Mater., 272, 2004.
 
6. Wang Bowen, Li Shuying, Yan Rongge, et al., J. Rare Earth., 21, 155, 2003.
 
7. C. Rodriguez, A. Barrio, I. Orue, J.L.Vilas. Physical, 142, 538, 2008.
 
8. Wang Jin, Qi Shuhua, Qiu Hua, Li Chunhua,Mat.Rev., 22, 37 2008.
 
9. H.M. Yin, L.Z. Sun, J.S. Chen. J.Mech.Phys. Sol., 54, 975, 2006.
http://dx.doi.org/10.1016/j.jmps.2005.11.007
 
10. X.Guan, X. Dong, J.Qu. J. Mag. Mag. Mater., 321, 2742, 2009.
http://dx.doi.org/10.1016/j.jmmm.2009.03.084
 
11. T. Tang, O. Myers, S.D. Felocelli, Int. J. Eng. Sci., 72, 1, 2013.
http://dx.doi.org/10.1016/j.ijengsci.2013.06.008
 
12. J. Aboudi, X. J. Zheng, K. JinInt. J. Eng. Sci., 81, 82, 2014.
http://dx.doi.org/10.1016/j.ijengsci.2014.04.007
 
13. J. H. Huang, Y. Chiu, H. K. Liu. J. Appl. Phys., 83, 5370, 1998.
 
14. S. Koyama, S.Katano, I. Saiki, T. Iwakuma.Mech. Mat., 43, 538, 2011.
http://dx.doi.org/10.1016/j.mechmat.2011.06.010
 
15. Fang Daining, Pei Yongmao. Deformation and Fracture of Ferromagnetic Solids, Science Press, Beijing, 2011, pp.252-260.
 
16. Du Shanyi, Wang Biao.Micro mechanics of composite materials, Science Press, Beijing, 1998, pp.8-21.
 
17. X. J. Zheng and X. E. Liu.JJ. Appl. Phys., 95, 1, 2005.
 
18. 18 L.Sun, X.J. Zheng. Int. J. Solids Struct., 43, 1613, 2006.
http://dx.doi.org/10.1016/j.ijsolstr.2005.06.085
 
19. A.F. Pshenichnikov. J. Mag. Mag. Mater., 324, 1342, 2012.
http://dx.doi.org/10.1016/j.jmmm.2011.11.028
 
20. Di Xuefei.Process for Preparing Bonded Terfenol-D Composite Materials.Master Degree Thesis, Harbin Inst. Techn., 2000, pp.4-13.
 

Current number: