Funct. Mater. 2016; 23 (3): 517-520.

http://dx.doi.org/10.15407/fm23.03.517

Stamp stress analysis with low temperature nanoimprint lithography

Hongwen Sun, Xiaochao Ma, Chenhui Hu

College of Internet of Things Engineering, Hohai University, Changzhou, Jiangsu, 213022, P.R. China

Abstract: 

High temperature nanoimprint lithography has the drawback of long process cycle, demoulding difficulty, polymer degradation, thermal stress. Low temperature nanoimprint lithography (LTNIL) can avoid these problems. LTNIL is also ideal for manufacturing biological compatibility samples since the samples do not sustain high temperature. However, LTNIL need to optimize the press parameters in order to fully transfer patterns. Finite Element Method (FEM) is an excellent approach to examine the filling process. The stamp stress was simulated from four points of view, imprint pressure, imprint temperature, stamp pattern and stamp material. It was found that the stress in the stamp corners is especially bigger than other areas, the stress increases with the stamps aspect ratio increases, and stress distribution is more uniform for dense pattern stamp.

Keywords: 
Hot embossing lithography, nanoimprint lithography,low temperature, stamp, stress, finite element method.
References: 

1. S. Y. Chou, P. R. Krauss, P. J. Renstrom, Appl.Phys.Lett., 67, 3114, 1995.
http://dx.doi.org/10.1063/1.114851
 
2. C.M. Sotomayor Torres, S. Zankovych, et al., Mater.Scie.Engin., 23, 23, 2003.
http://dx.doi.org/10.1016/S0928-4931(02)00221-7
 
3. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, Microelectron. Eng., 57-58, 367, 2001.
http://dx.doi.org/10.1016/S0167-9317(01)00435-X
 
4. N. Ikutame, K. Kawaguchi, H. Ikeda, et al, J. Appl. Phys., 114, .083514, 2013.
 
5. A. Pepin, P. Youinou, V. Studer, et al., Microelectron. Eng., 61-62, 927, 2002.
http://dx.doi.org/10.1016/S0167-9317(02)00511-7
 
6. J. Kettle, S. Whitelegg, A. M. Song, et al., Nanotechnology, 21, 075301, 2010.
http://dx.doi.org/10.1088/0957-4484/21/7/075301
 
7. H.-C. Scheer, N. Bogdanski, M. Wissen, et al., J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct., 23, 2963-, 2005.
 
8. H.L. Chen, S. Y. Chuang, H. C. Cheng, et al. Microelectro. Eng., 83, 893, 2006.
http://dx.doi.org/10.1016/j.mee.2006.01.095
 
9. Y. Lu, J. Sun, J. Shen, Langmuir, 24, 8050, 2008
http://dx.doi.org/10.1021/la800998n
 
10. N. W. Kim, K. W. Kim, H.-C. Sin, Microelectron. Eng., 85, 1858, 2008.
http://dx.doi.org/10.1016/j.mee.2008.05.030
 
11. J. H. Song, H. Huh, S. H. Kim,H. T. Hahn, Mater.Sci. Forum, 505-507, 85, 2006.
http://dx.doi.org/10.4028/www.scientific.net/MSF.505-507.85

Current number: