Funct. Mater. 2016; 23 (4): 535-539.

https://doi.org/10.15407/fm23.04.357

X-ray and photo-excited luminescence of ZnWO4 nanoparticles with different size and morphology

I.A.Tupitsyna1, P.O.Maksimchuk1, A.G.Yakubovskaya1, Y.V.Malyukin1, V.S.Zvereva1, O.M.Vovk2

1 Institute for Scintillation Materials, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2Institute for Single Crystals, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

X-ray and photoluminescence of ZnWO4 nanocrystals with controlled size and morphology: grains with diameter of 10-20 nm; rods with diameter of 10-20 nm and length of 200-250 nm produced by microwave hydrothermal method were studied. Red luminescence with λmax = 700 nm was found in the samples. The intensity of the red luminescence increases with decreasing of the ZnWO4 nanoparticles size due to increase of concentration of oxygen vacancies and creation of distorted WO6 centers. It was shown that reduction in the X-ray luminescence intensity with decrease of the ZnWO4 nanoparticles size is due to creation of the distorted WO6 centers which are the nonradiative relaxation channel competing with the self-trapped excitons.

Keywords: 
nanocrystals, ZnWO<sub>4</sub>, oxygen vacancies, luminescence, scintillator.
References: 

1. M.Globus, B.Grinyov, J.K.Kim, Inorganic Scintillators for Modern and Traditional Applications, Institute for Single Crystals, Ukraine, Kharkiv (2005).

2. L.L.Nagornaya, B.V.Grinyov, A.M.Dubovik et al., IEEE Trans. Nucl. Sci., 56, 994 (2009). https://doi.org/10.1109/TNS.2009.2016342

3. R.Shi, Y.Wang, D.Li et al., Appl. Catal. B: Environ, 100, 173 (2011). https://doi.org/10.1016/j.apcatb.2010.07.027

4. H.M.Shang, M.Bliss, S.Heald et al., J. Mater. Res., 22, 1527 (2007). https://doi.org/10.1557/JMR.2007.0215

5. H.M.Shang, Y.Wang, M.Bliss et al., Appl. Phys. Lett., 87, 051909 (2005). https://doi.org/10.1063/1.2001133

6. S.H.Yu, M.Antonietti, H.Colfen, M.Giersig, Angew. Chem. Int. Ed. Engl., 41, 2356 (2002). https://doi.org/10.1002/1521-3773(20020703)41:13<2356::AID-ANIE2356>3.0.CO;2-U

7. A.G.Yakubovskaya, K.A.Katrunov, I.A.Tupitsyna et al., Functional Materials, 18, 446 (2011).

8. P.Retif, S.Pinel, M.Toussaint et al., Theranostics, 5, 1030 (2015). https://doi.org/10.7150/thno.11642

9. A.-L.Bulin, A.Vasil'ev, A.Belsky et al., Nanoscale, 7, 5744 (2015). https://doi.org/10.1039/C4NR07444K

10. K.Kirakci, P.Kubat, K.Fejfarova, Inorg. Chem., (2015) doi: 10.1021/acs.inorgchem. 5b02282

11. S.S.Lucky, K.C.Soo, Y.Zhang, Chem. Rev., 115, 1990 (2015). https://doi.org/10.1021/cr5004198

12. W.Chen, J.J.Zhang, J. Nanosci. Nanotechnol., 6, 1159 (2006). https://doi.org/10.1166/jnn.2006.327

13. A.-L.Bulin, C.Truillet, R.Chouikrat et al., J. Phys. Chem. C, 117, 21583 (2013). https://doi.org/10.1021/jp4077189

14. Y.Tang, J.Hu, A.H.Elmenoufy et al., ACS Appl. Mater. & Interfaces, 7, 12261 (2015). https://doi.org/10.1021/acsami.5b03067

15. H.Chen, G.D.Wang, Y.-J.Chuang et al., J. Nano Lett., 15, 2249 (2015). https://doi.org/10.1021/nl504044p

16. Z.Yi et al., Biomater. Sci., 2, 1404 (2014). https://doi.org/10.1039/C4BM00158C

17. Y.Yang, Biomaterials, 34, 774 (2013). https://doi.org/10.1016/j.biomaterials.2012.10.022

18. L.Rao, J. Mater. Chem. B, 2, 6527 (2014). https://doi.org/10.1039/C4TB00675E

19. L.Wang, Y.Ma, H.Jiang, J. Mater. Chem. C, 2, 4651 (2014) https://doi.org/10.1039/c4tc00245h

20. A.V.Ishchenko, R.F.Samigullina, T.I.Krasnenko et al., Radiat. Measur. (2016), doi: 10.1016/j.radmeas.2016.01.030 https://doi.org/10.1016/j.radmeas.2016.01.030

21. V.Vistovskyy, Ya.Chornodolskyy, A.Gloskovskii et al., Radiat. Measur., 90, 174 (2016). https://doi.org/10.1016/j.radmeas.2015.12.

\1.

22. A.Yakubovskaya, I.Tupitsyna, D.Sofronov et al., Functional Materials, 20, 523 (2013). https://doi.org/10.15407/fm20.04.523

23. V.M.Lisitsyn, D.T.Valiev, I.A.Tupitsyna et al., J. Lumin., 153, 130 (2014). https://doi.org/10.1016/j.jlumin.2014.03.024

24. A.Kalinko, A.Kuzmin, J. Luminescence, 129, 1144 (2009). https://doi.org/10.1016/j.jlumin.2009.05.010

25. V.Nagirnyi, E.Feldbach, L.Jonsson et al., Nucl. Instr. and Meth. Phys. Res. A, 486, 395 (2002). https://doi.org/10.1016/S0168-9002(02)00740-4

26. Cz.Koepke, A.Lempicki, J. Luminescence, 59, 33 (1994). https://doi.org/10.1016/0022-2313(94)90019-1

27. H.Kraus, V.B.Mikhailik, Y.Ramachers et al., Phys. Lett. B, 610, 37 (2005). https://doi.org/10.1016/j.physletb.2005.01.095

28. N.R.Krutyak, V.V.Mikhailin, A.N.Vasil'ev et al., J. Luminescence, 144, 105 (2013). https://doi.org/10.1016/j.jlumin.2013.06.039

29. P.O.Maksimchuk, V.V.Seminko, I.I.Bespalova et al., Functional Materials, 21, 254 (2014).

30. P.Dutta, S.Pal, M.S.Seehra et al., Chem. Mater., 18, 5144 (2006). https://doi.org/10.1021/cm061580n

31. U.Deshpande, S.Patil, S.Kuchibhatla et al., Appl. Phys. Lett., 87, 133113:1-3 (2005).

32. G.Blasse, M.Wiegel, J. Alloys Comp., 224, 342 (1995). https://doi.org/10.1016/0925-8388(95)01569-8

33. T.Yamase, M.Sugeta, J. Chem. Soc., Dalton Trans., 759 (1993). https://doi.org/10.1039/dt9930000759

Current number: