Funct. Mater. 2016; 23 (4): 552-556.

https://doi.org/10.15407/fm23.04.378

Change of dislocations density in single crystals of various types diamonds depending on the growth temperature and rate

O.M.Suprun1, G.D.Il'nitskaya1, V.A.Kalenchuk1, O.A.Zanevskii1, S.N.Shevchuk2, V.V.Lysakovskii1

1V.Bakul Institute for Superhard Materials, National Academy of Sciences of Ukraine, 2 Avtozavods'ka Str., 04074 Kyiv, Ukraine
2SedKrist GmbH, Ebereschenring 14, 14554 Seddiner See, Germany

Abstract: 

Single crystals of various types of diamonds have been grown by the melt solution crystallization at high pressures and temperatures. To define the emergences of dislocations onto the {100} and {111} faces, the selective etching of the crystals in KOH and KNO3 melt has been used. It has been defined that the dislocation density, Nd, in diamond single crystals grown at a low growth rate of 1-2 mg/h at T = 1420-1500°C is 0.8-3·102 cm-2 and the dislocation densities, Nd, in single crystals grown at temperatures 1280-1450°C and 1280-1350°C at growth rates of 3-5 mg/h and 20-25 mg/h are 1.1-2.2·103 and 1.06-1.35·106 cm-2, respectively.

Keywords: 
diamond single crystals, dislocations density, selective etching, etching pits.
References: 

1. M.P.Shaskol'skaya, Articles about Properties of Crystals, Nauka, Moscow (1987) [in Russian].

2. A.Kadich, E.Edelen, Gauge Theory of Dislocations and Disclinations, Springer, Berlin (1983). https://doi.org/10.1007/3-540-11977-9

3. D.P.Grigor'ev, I.I.Shafranovsky, Zapiski Vseroc. Min. Obshchestva, I, Issue 1-2,Ch. 70 (1942).

4. A.A.Kukharenko, V.M.Titova, Scientific Notes of LSU, 215, 26 (1957).

5. R.B.Heimann, Auflosung von Kristallen. Theorie und Technische Anwendung, Springer-Verlag, New York (1975). https://doi.org/10.1007/978-3-7091-3402-3

6. K.Sangwal, Etching of Crystals: Theory, Experiment, and Application, Elsevier Science Publishers B. V., Amsterdam (1987).

7. J.Friedel, Dislocations, Pergamon Press, Oxford-London-Edinburg-New York-Paris-Frankfurt (1964).

8. N.A.Tyapushina, E.K.Naimi, G.M.Zinenkova, Effect of Ultrasound on Crystals with Defects, Izd. Moscow University, Moscow (1999) [in Russian].

9. A.I.Chepurov, I.I.Fedorov, V.M.Sonin et al., Eur. J. Mineral., 11, 355 (1999). https://doi.org/10.1127/ejm/11/2/0355

10. Yu.N.Pal'yanov, A.F.Khokhryakov, Yu.M.Borzdov et al., in: Extend. Abstr. 6 Int. Kimb. Conf., Novosibirsk, Russia (1995), p.415.

11. Yu.N.Pal'yanov, A.F.Khokhryakov, Yu.M.Borzdov et al., in: Proc. 8 Int. Symp. on Water-Rock Interaction (WRI-8), Vladivostok, Russia (1995), p.95.

12. A.Mussi, D.Eyidi, A.A.Shiryaev, J. Rabier, Phys. Stat. Solidi A, 210, 191 (2013). https://doi.org/10.1002/pssa.201200483

13. Yu.N.Pal'yanov, A.F.Khokhriakov, Yu.M.Borzdov et al., in: Abst. Joint XV AIRAPT & XXXIII EHPRU Conf. Warsaw, Poland (1995), p.314.

14. V.A.Fedorov, Yu.I.Tyalin, V.A.Tyalina, Dislocation Mechanisms of the Fracture of Twinning Materials, Izd. Machine-building-1, Moscow (2004) [in Russian].

15. Yu.N.Pal'yanov, A.G.Sokol, Yu.M.Borzdovet et al., Lithos., 60, 145 (2002). https://doi.org/10.1016/S0024-4937(01)00079-2

16. Yu.N.Pal'yanov, Yu.M.Borzdov, A.G.Sokol et al., Dokl. RAN, 353, 233 (1997).

17. M.G.Mil'vidskii, V.B.Osvenskii, Structural Defects in Single Crystals of Semiconductors, Metallurgiya, Moscow (1984) [in Russian].

18. R.H.Wentorf, J. Phys. Chem., 75, 1833 (1971). https://doi.org/10.1021/j100681a013

19. H.M.Strong, R.H.Wentorf, Die Naturwissenschaften, 59, 1 (1972). https://doi.org/10.1007/BF00594616

20. J.Hirt, J.Lote, Theory of Dislocations, New York-St.Louis-San Francisco-Toronto-London-Sydney (1969).

Current number: