Funct. Mater. 2016; 23 (4): 618-623.

https://doi.org/10.15407/fm23.04.433

Simulation of the electron spin resonance peak shape for magnetic nanopowder formed by particles of different diameters

T.Kalmykova1, A.Vakula1, S.Nedukh1,2, S.Tarapov1,2,3, A.Belous4, O.Yelenich4

1O.Usikov Institute for Radiophysics and Electronics, National Academy of Sciences of Ukraine, 12 Proskura Str.,61085 Kharkiv, Ukraine
2V.Karazin Kharkiv National University, 4 Svobody Sq.,61022 Kharkiv, Ukraine
3Kharkiv National University of Radio Electronics, 14 Nauky Ave.,61166 Kharkiv, Ukraine
4Institute of General and Inorganic Chemistry, 32/34 Palladina Blvd., Kyiv 03142, Ukraine

Abstract: 

Results of simulation of shape of the electron spin resonance absorption peak for magnetic nanopowder are presented. The influence of magnetic particle diameter on the shape and on width of the resonance peak is shown. The role of internal magnetic anisotropy field is under discussion. The simulation results show a good agreement with the experimental data of the electron spin resonance absorption in a) Fe3O4_Triton, b) Fe3O4_Crio, nanopowder and the data of its X-ray analysis.

Keywords: 
electron spin resonance, magnetic nanopowder, magnetic anisotropy.
References: 

1. J.L.Dormann, E.Tronc, D.Fiorani, Adv. Chem. Phys., 98, 283 (1997). https://doi.org/10.1002/9780470141571.ch4

2. J.Kliava, R.Berger, Recent Res. Devel. Non-Crystalline Solids, 3, 41 (2003).

3. J.Gao, B.Xu, Nano Today, 4, 37 (2009). https://doi.org/10.1016/j.nantod.2008.10.009

4. T.-Y.Liu, S.-H.Hu, D.-M.Liu et al., Nano Today, 4, 52 (2009). https://doi.org/10.1016/j.nantod.2008.10.011

5. V.Skumryev, S.Stoyanov, Y.Zhang et al., Nature, 423, 850 (2003). https://doi.org/10.1038/nature01687

6. Yuanzhi Chen, Ceram. Int., 27, 73 (2001). https://doi.org/10.1016/S0272-8842(00)00044-4

7. R.J.Usselman, S.E.Russek, M.T.Klem et al., J. Appl. Phys., 112, 084701 (2012). https://doi.org/10.1063/1.4757964

8. T.V.Bagmut, Radio Phys. Electr., 13, 65 (2007).

9. O.V.Yelenich, S.O.Solopan, T.V.Kolodiazhnyi et al., Sol. St. Phen., 230, 108 (2015). https://doi.org/10.4028/www.scientific.net/SSP.230.108

10. T.V.Kalmykova, S.I.Tarapov, S.V.Nedukh et al., Functional Materials, 19, 486 (2012).

11. L.V.Lutsev, M.N.Kopytin, A.V.Sitnikov et al., Phys. Sol. Stat., 47, 2169 (2005). https://doi.org/10.1134/1.2131164

12. E.Limpert, W.A.Stahel, M.Abbt, BioScience, 51, 341 (2001). https://doi.org/10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2

13. E.S.Borovic, V.V.Eremenko, A.S.Milner, Lecture on Magnetism, Kharkov University (2005) [in Russian].

14. M.R.Dudek, N.Guskos, M.Kosmider, in: Smart Nanoparticles Technology, ed. by A.Hashim, InTech (2012), Wroclaw p.373.

Current number: