Funct. Mater. 2016; 23 (4): 668-675.

https://doi.org/10.15407/fm23.04.478

Screening of lignin-degrading fungi for their ability to decay cassava residue

Bin Xu, Huixing Li, Chaojun Du, Ying Wang, Bin Li

School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, P.R. China

Abstract: 

To screen applicable fungi for their ability to decay cassava residue, nineteen lignin-degrading fungi were isolated by guaiacol and azure B plates. Cassava residue decayed characteristics of the isolates were evaluated systematically by principal component analysis (PCA) of weight and components loss data, and compared with those of Phanerochaete chrysosporium and Trametes sp. SYBC-L4. Four groups of decayed cassava residue were identified. Fungus N1 and N3 grouped together and showed high lignin-degrading selectivity. Fungus N5 and N8 grouped with P. chrysosporium and showed high degradation ability. During the four weeks incubation, the lignin-degrading selectivity value of fungus N3 ranged from 1.14 to 1.38 and was the best, the weight loss of fungus N5 and N8 achieved 30.93% and 33.34%, respectively. Fungus N3, N5, and N8 were identified as Pleurotus sp., Trametes sp. and Coriolopsis sp. based on 18S rDNA gene sequences, respectively. PCA is an effective method in recognizing cassava residue decayed characteristics of fungi and is helpful to screen fungi for their potential application. The three screened out fungi could be used to decay cassava residue for enhancement of its bioconversion efficiency.

Keywords: 
Lignin-degrading fungi, cassava residue, decay, principal component analysis, screening.
References: 

1. Q. H. Zhang, et al., Bioresour Technol, 102, 8899, 2011. https://doi.org/10.1016/j.biortech.2011.06.061

2. Y. H. Tang, B. F. Xie, Pharm Biotechn, 13, 51, 2006.

3. A. O. Ubalua, Afr J Microbiol Res, 18, 2065, 2007.

4. C. Liu, M.S. thesis, Central China Agricultural University, Wuhan, China, 2009.

5. F. Monlau, A. Barakat, E. Trably, et al Crit Rev Env Sci Tec, 43, 260, 2013. https://doi.org/10.1080/10643389.2011.604258

6. C. Sanchez, Biotechnol Adv, 27, 185, 2009. https://doi.org/10.1016/j.biotechadv.2008.11.001

7. R. Amirta, T. Tanabe, T. Watanabe, Y. Honda, et al, J Biotechnol, 123, 71, 2006. https://doi.org/10.1016/j.jbiotec.2005.10.004

8. A. J. Chang, J. Fan, X. Wen, Int Biodeterior Biodegr, 72, 26, 2012. https://doi.org/10.1016/j.ibiod.2012.04.013

9. H. Muller, W. Trosch, Appl Microbiol Biot, 24, 180, 1986. https://doi.org/10.1007/BF00938793

10. L. Zhao, et al., Bioresour Techn, vol. 114, pp. 365-369, June 2012. https://doi.org/10.1016/j.biortech.2012.03.076

11. C. Wan, and Y. Li, Biotechnol Advanc, 30, 1447, 2012. https://doi.org/10.1016/j.biotechadv.2012.03.003

12. A. Ferraz, E. Esposito, R. E. Bruns, N. Duran, World J Microbiol Biotechn, 14, 487, 1998. https://doi.org/10.1023/A:1008875730177

13. E. Agosin, et al., Appl Environment Microbiol, 56, 65, 1990.

14. H. B. Yu, Studies on degradation difference of three kinds of lignocellulose with white rot fungi, Ph. D. dissertation, Huazhong University of Science and Technology, Wuhan, China, 2007.

15. K. Fackler, M. Schwanninger, C. Gradinger, et al., Holzforschung, 61, 680, 2007. https://doi.org/10.1515/HF.2007.098

16. A. Ferraz, J. Rodriguez, J. Freer, J. Baeza, World J Microbiol Biotechn, 17, 31, 2001. https://doi.org/10.1023/A:1016646802812

17. J. Snajdr, et al., FEMS Microbiol Ecol,. 78, 80, 2011. https://doi.org/10.1111/j.1574-6941.2011.01123.x

18. M. I. Ali, N. M. Khalil, M. N. A. El-Ghany, Afr J Microbiol Res, 16, 3783, 2012.

19. H. Y. Chen, D. S. Xue, X. Y. Feng, S. J. Yao, Appl J Biochem Biotechnol, 165, 1754, 2011. https://doi.org/10.1007/s12010-011-9392-y

20. M. J. Dinis, et al., Bioresour Technol, 100, 4829, 2009. https://doi.org/10.1016/j.biortech.2009.04.036

21. M. Yu, G. M. Zeng, Y. N. Chen, H. Y. Yu, et al., Process Biochem, 44, 17, 2009. https://doi.org/10.1016/j.procbio.2008.09.005

22. X. Q. He, Multivariate statistical analysis, China Renmin University Press, Beijing, 2008, pp. 153-173.

23. H. Cabana, et al., Chemosphere, 67, 770, 2007. https://doi.org/10.1016/j.chemosphere.2006.10.037

24. T. K. Hakala, P. Maijala, J. Konn, A. Hatakka, Enzyme Microb Tech, 34, 255, 2004. https://doi.org/10.1016/j.enzmictec.2003.10.014

25. Y. Zhu, H. Zhang, Y. Zhang, F. Huang, Afr J Microbiol Res, 45, 9182, 2011.

26. D. Jalc, F. Nerud, R. Zitnan, and P. Siroka, Folia Microbiol, 41, 73, 1996. 1996. https://doi.org/10.1007/BF02816344

Current number: