Funct. Mater. 2017; 24 (1): 011-015.

doi:https://doi.org/10.15407/fm24.01.011

Obtaining of ZnSe nanocrystals from ZnSe bulk crystals by mechanical milling and chemical vapor deposition in silica matrices

L.I.Voloshina, V.V.Seminko, I.I.Bespalova, P.O.Maksimchuk, O.G.Viagin, A.A.Masalov

Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

In the paper ZnSe nanocrystals were obtained from bulk ZnSe crystal using two different methods: mechanical milling and heating of bulk crystal with subsequent deposition of zinc and selenium in the pores of silica matrix. Both samples demonstrate well-known for ZnSe bulk crystals luminescence band at ~ 500 nm, however its temperature stability is sufficiently higher for nanocrystals obtained by either of two routes than for correspondent bulk sample. Beyond ZnSe luminescence, sample obtained by mechanical milling show ZnO luminescence determined by ZnO layer formed at the surface of ZnSe nanocrystal in oxidative atmosphere.

Keywords: 
ZnSe nanocrystals, luminescence.
References: 

1. N.Zhao, T.P.Osedach, L.-Y.Chang et al., ACS Nano, 4, 3743 (2010). https://doi.org/10.1021/nn100129j

2. J.Chen, J.L.Song, X.W.Sun et al., Appl. Phys. Lett., 94, 153115-3 (2009).

3. N.Tessler, V.Medvedev, M.Kazes et al., Science, 295, 1506 (2002). https://doi.org/10.1126/science.1068153

4. V.I.Klimov, A.A.Mikhailovsky, S.Xu et al., Science, 290, 314 (2000). https://doi.org/10.1126/science.290.5490.314

5. C.Dang, J.Lee, C.Breen et al., Nature Nanotechnology, 7, 335 (2012). https://doi.org/10.1038/nnano.2012.61

6. M.Zhang, A.Banerjee, C.-S.Lee et al., Appl. Phys. Lett., 98, 221104-3 (2011).

7. Quantum Dots: Research, Technology and Applications, ed. by R.W.Knoss, Nova Science Publishers, New York (2008).

8. J.Drbohlavova, V.Adam, R.Kizek, J.Hubalek, Int. J. Mol. Sci., 10, 656 (2009). https://doi.org/10.3390/ijms10020656

9. W.C.W.Chan, S.M.Nie, Science, 281, 2016 (1998). https://doi.org/10.1126/science.281.5385.2016

10. W.W.Yu, Expert Opin. Biol. Ther., 8, 1571 (2008). https://doi.org/10.1517/14712598.8.10.1571

11. R.Gill, M.Zayats, I.Willner, Angew. Chem. Int. Ed., 47, 7602 (2008). in Current Chem., 374, 65 (2016).

13. P.Harrison, A.Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, John Wiley & Sons, New York (2016).

14. O.Viagin, A.Masalov, I.Bespalova et al., J. Luminescence, 179, 178 (2016). https://doi.org/10.1016/j.jlumin.2016.07.001

15. K.Vanheusden, W.L.Warren, C.H.Seager et al., J. Appl.Phys., 79, 7983 (1996). https://doi.org/10.1063/1.362349

16. K.Vanheusden, C.H.Seager, W.T.Warren et al., Appl. Phys. Lett., 68, 403 (1996). https://doi.org/10.1063/1.116699

17. L.E.Brus, J. Chem. Phys., 80, 4403 (1984). https://doi.org/10.1063/1.447218

18. J.Gutowski, K.Sebald, T.Voss. ZnSe: Dielectric Constants. In New Data and Updates for III-V, II-VI and I-VII Compounds, Springer Berlin, Heidelberg (2010).

19. A.A.Masalov, V.V.Seminko, N.V.Kononets et al., J. Luminescence, 181, 337 (2017). https://doi.org/10.1016/j.jlumin.2016.09.043

Current number: