Funct. Mater. 2017; 24 (1): 021-025.

doi:https://doi.org/10.15407/fm24.01.021

Synthesis and characterization of branched gold nanoparticles

T.G.Beynik1, N.A.Matveevskaya1, M.V.Dobrotvorskaya1, A.S.Garbuz2, D.Yu.Kosyanov3, V.I.Vovna3, A.A.Vornovskikh1, S.I.Bogatyrenko4

1Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2B.Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauky Ave., 61103 Kharkiv, Ukraine
3Far Eastern Federal University, 8 Sukhanova Str., 690950 Vladivostok, Russian Federation
4V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine

Abstract: 

In this paper we demonstrate obtaining and properties of gold nanostars and nanoflowers with average size in the range of 50 to 70 nm and the size dispersion ≤20 %. Transmission electron microscopy and photoelectron spectroscopy were used to study the composition and structure obtained Au nanoparticles, optical properties their colloidal solutions were studied.

Keywords: 
gold nanostars, gold nanoflowers, optical properties.
References: 

1. G.Peng, U.Tisch, O.Adams et al., Nature Nanotechnology, 4, 669 (2009). https://doi.org/10.1038/nnano.2009.235

2. C.Morasso, D.Mehn, R.Vanna et al., Mater. Chem. Phys., 143, 1215 (2014). https://doi.org/10.1016/j.matchemphys.2013.11.024

3. S.G.Jiji, Mater. Today: Proceedings, 2, 928 (2015).

4. K.Saha, S.S.Agasti, C.Kim et al., Chem. Rev., 112, 2739 (2012). https://doi.org/10.1021/cr2001178

5. S.K.Hashmi, M.Rudolph, Chem. Soc. Rev., 37, 1766 (2008). https://doi.org/10.1039/b615629k

6. V.Sharma, N.Sinha, S.Dutt et al., J. Colloid Interf. Sci., 463, 180 (2016). https://doi.org/10.1016/j.jcis.2015.10.036

7. W.L.Meyer, Y.Liu, X.W.Shi et al., Biomacromolecules, 10, 858 (2009). https://doi.org/10.1021/bm801364h

8. M.Lippitz, M.A.van Dijk, M.Orrit, Nano Lett., 5, 799 (2005). https://doi.org/10.1021/nl0502571

9. L.Chen, J.Lv, A.Wang et al., Sensor Actuator, 222, 937 (2016). https://doi.org/10.1016/j.snb.2015.09.010

10. H.Yuan, C.G.Khoury, H.Hwang et al., Nanotechnology, 23, 075102 (2012). https://doi.org/10.1088/0957-4484/23/7/075102

11. E.S.Kooij, W.Ahmed, C.Hellenthal et al., Colloid Surface A., 413, 231 (2012)).

12. A.I.Borodinova, V.G.Kravets, V.R.Romanyuk, J. Nano-Electron. Phys., 4, 02039 (2012).

13. T.K.Sau, C.J.Murphy, J. Am. Chem. Soc., 126, 8648 (2004). https://doi.org/10.1021/ja047846d

14. L.Minati, F.Benetti, A.Chiappini et al., Colloid Surface A., 441, 623 (2014)).

15. S.A.Canonico-May, K.R.Beavers, M.J.Melvin et al., J. Colloid Interf. Sci., 463, 229 (2016). https://doi.org/10.1016/j.jcis.2015.10.053

16. P.Ndokoye, X.Li, Q.Zhao et al., J. Colloid Interf. Sci., 462, 341 (2016). https://doi.org/10.1016/j.jcis.2015.10.007

17. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, ed. by D.Briggs, M.P.Seach. J.Wiley&Sons Ltd, New York (1983).

18. A.I.Yegorov, V.I.Gukasov, A.I.Ivanin et al., Innovatics and Expert Examination, 2, 60 (2014).

19. Yu.A.Krutyakov, A.A.Kudrinskiy, A.Yu.Olenin, G.V.Lisichkin, Russ. Chem. Rev., 77, 233 (2008). https://doi.org/10.1070/RC2008v077n03ABEH003751

Current number: