Funct. Mater. 2017; 24 (1): 046-051.

doi:https://doi.org/10.15407/fm24.01.046

Effect of fluorine addition on the structure and properties of high-porous glass ceramics applicable for reconstructive surgery

O.Sych1, A.Iatsenko2, H.Tovstonoh1, T.Tomila1, Y.Yevych1

1I.Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky Str., 03680 Kyiv, Ukraine
2National Technical University "Igor Sikorsky Kyiv Polytechnic Institute", 37 Peremogy Ave., 03056 Kyiv, Ukraine

Abstract: 

Effect of fluorine introduction into composition of high-porous glass ceramics based on biogenic hydroxyapatite and glass of the SiO2-CaO-Na2O system on structure and properties of the material obtained via doubling the polymer matrix structure has been studied. It is established that during sintering of samples from high-porous glass ceramics at 900°C a partial decomposition and/or interaction of hydroxyapatite with the glass phase occur, that results in forming the multiphase ceramics containing renanite, calcium silicophosphate, calcium pyrophosphate, pectolite and hydroxyapatite. In addition, in the case of fluorine introduction, fluorapatite is formed and sample strength increases by 30 % along with slight decrease in solubility in vitro.

Keywords: 
hydroxyapatite, fluorapatite, glass, high-porous biomaterial, implant.
References: 

1. E.T.Everett, J. Dent. Res., 90, 552 (2011). https://doi.org/10.1177/0022034510384626

2. M.Supova, Ceram. Int., 41, 9203 (2015). https://doi.org/10.1016/j.ceramint.2015.03.316

3. F.A.Shah, Mater. Sci. Eng. C, 58, 1279 (2016). https://doi.org/10.1016/j.msec.2015.08.064

4. A.Bianco, I.Cacciotti, L.Montanaro et al., Ceram. Int., 36, 313 (2010). https://doi.org/10.1016/j.ceramint.2009.09.007

5. M.Sadat-Shojai, M.-T.Khorasani, E.Dinpanah-Khoshdargi, A.Jamshidi, Acta Biomater., 9, 7591 (2013). https://doi.org/10.1016/j.actbio.2013.04.012

6. M.Vallet-Regi, Compt. Rend. Chim., 13, 174 (2010). https://doi.org/10.1016/j.crci.2009.03.004

7. J.Aaseth, M.Shimshi, J.L.Gabrilove, G.S.Birketvedt, J. Trace Elem. Exp. Med., 17, 83 (2004). https://doi.org/10.1002/jtra.10051

8. P.Vestergaard, N.R.Jorgensen, P.Schwarz, L.Mosekilde, Osteoporos. Int., 19, 257 (2008). https://doi.org/10.1007/s00198-007-0437-6

9. A.Iatsenko, O.Sych, T.Tomila, Proc. Appl. Ceram., 9, 99 (2015). https://doi.org/10.2298/PAC1502099I

10. E.E.Sych, A.P.Yatsenko, T.V.Tomila et al., Powder. Metall. Met. Ceram., 55, 319 (2016). https://doi.org/10.1007/s11106-016-9808-x

11. Ukraine Patent 92619 (2014).

12. L.M.Panchenko, E.E.Sych, A.P.Iatsenko, Bullet. Ortop. Traumatol. Pros., 4, 50 (2014).

13. D.S.Brauer, M.N.Anjum, M.Mneimne et al., J. Non-Cryst. Solids, 358, 1438 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.03.014

14. M.Plemyannikov, A.Iatsenko, B.Kornilovych, Glass Chemistry and Technology. High Temperature Processes, Osvita, Kyiv (2015) [in Ukrainian].

15. Ukraine Patent 97215 (2015).

16. Mahmoud Eidi, Ind. J. Fund. Appl Life Sci., 4, 3690 (2014).

17. B.Basar, A.Tezcaner, D.Keskin, Z. Ceram. Int., 36, 1633 (2010). https://doi.org/10.1016/j.ceramint.2010.02.033

18. I.I.Plyusnina, Infrakrasnye Spektry Silikatov, Izdatelstvo Moskovskogo Universiteta, Moscow (1967) [in Russian].

19. Yu.A.Guloyan, Tehnologiya Steklotary i Sortovoy Posudy, Legprombytizdat, Moscow (1986) [in Russian].

20. M.A.Bezborodov, Sintez i Stroenie Silikatnyh Styokol, Nauka i Tehnika, Minsk (1968) [in Russian].

21. N.M.Pavlushkin, Himicheskaya Tehnologiya Stekla i Sitallov, Stroyizdat, Moscow (1983) [in Russian].

22. V.V.Pollyak, P.D.Sarkisov, V.F.Solinov, M.A.Tsaritsyin, Tehnologiya Stroitelnogo i Tehnicheskogo Stekla i Shlakositallov, Stroyizdat, Moscow (1983) [in Russian].

23. F.Barandehfard, M.Kianpour Rad, A.Hosseinnia et al., Ceram. Int., 42, 17866 (2016). https://doi.org/10.1016/j.ceramint.2016.08.122

Current number: