Funct. Mater. 2017; 24 (1): 052-055.

doi:https://doi.org/10.15407/fm24.01.052

Influence of gas adsorption on the impedance of porous GaAs

Y.S.Milovanov1, I.V.Gavrilchenko1, S.V.Kondratenko1, A.P.Oksanich2, S.E.Pritchin2, M.G.Kogdas2

1Institute of High Technologies, T.Shevchenko National University of Kyiv, 64 Volodymyrska Str., 06001 Kyiv, Ukraine
2Kremenchuk M.Ostrohradskyi National University, 20 Pershotravneva Str. 39600 Kremenchuk, Ukraine

Abstract: 

Porous GaAs was formed electrochemically on n-type GaAs in a HF:C2H5OH (1:3) electrolyte. The surface morphology of porous GaAs has been studied using atomic force microscopy (AFM). The hodographs of the total impedance and the adsorption influence of ethanol and acetone vapor on the charge transfer were examined.

Keywords: 
Porous GaAs, AFM, impedance spectroscopy, Nyquist plots.
References: 

1. L.T.Canham, Appl. Phys. Lett., 57, 1046 (1990). https://doi.org/10.1063/1.103561

2. V.G.Litovchenko, T.I.Gorbanyuk, V.S.Solntsev et al., Appl. Surf. Sci., 234, 262 (2004). https://doi.org/10.1016/j.apsusc.2004.05.146

3. V.Strikha, V.Skryshevsky, V.Polishchuk et al., J. Porous Mat., 7, 111 (2000). https://doi.org/10.1023/A:1009634720436

4. Z.Gaburro, P.Bettotti, Saiani et al., Appl. Phys. Lett., 85, 555 (2004). https://doi.org/10.1063/1.1775887

5. V.A.Vikulov, V.I.Strikha, V.A.Skryshevsky et al., J. Phys. D, 33, 1957 (2001). https://doi.org/10.1088/0022-3727/33/16/304

6. T.Dittrich, E.A.Konstantinova, V.Ya.Timoshenko, Thin Solid Films, 255, 238 (1995). https://doi.org/10.1016/0040-6090(94)05662-W

7. T.Serdiuk, V.A.Skryshevsky, I.I.Ivanov et al., Mater. Lett., 65, 2514 (2011). https://doi.org/10.1016/j.matlet.2011.05.033

8. S.Fellah, F.Ozanam, N.Gabouze et al., Phys. Stat. Sol. A, 182, 367 (2000). https://doi.org/10.1002/1521-396X(200011)182:1<367::AID-PSSA367>3.0.CO;2-C

9. I.I.Ivanov, V.A.Skryshevsky, T.Serdiuk et al., Sensors and Actuators B, 174, 521 (2012). https://doi.org/10.1016/j.snb.2012.02.056

10. S.Chan, P.M.Fauchet, Y.Li et al., Phys. Stat. Solidi. A, 182, 541 (2000). https://doi.org/10.1002/1521-396X(200011)182:1<541::AID-PSSA541>3.0.CO;2-#

11. A.Benilov, I.Gavrilchenko, I.Benilova et al., Sensors and Actuators A, 137, 345 (2007). https://doi.org/10.1016/j.sna.2007.02.032

12. V.Lysenko, V.Onyskevych, O.Marty et al., Appl. Phys. Let., 92, 251910 (2008). https://doi.org/10.1063/1.2948955

13. P.Schmuki, D.J.Lockwood, H.J.Labbe et al., Appl. Phys. Lett., 69, 1620 (1996). https://doi.org/10.1063/1.117050

14. M.Naddaf, S.Saloum, Physica E, 41, 1784 (2009). https://doi.org/10.1016/j.physe.2009.06.086

15. H.Saghrouni, A.Missaoui, R.Hannachi et al., Superlattices and Microstructures, 64, 507 (2013). https://doi.org/10.1016/j.spmi.2013.10.007

16. A.Salehi, A.Nikfarjam, D.J.Kalantari, Sensors and Actuators B, 113, 419 (2006). https://doi.org/10.1016/j.snb.2005.03.064

17. JR Mac Donald, Impedance Spectroscopy e Emphasizing Solid Materials and Systems, Wiley, New York (1987).

18. E.E.Barsoukov, J.R.Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, Wiley, New York (2005).

19. Y.S.Milovanov, I.V.Gavrilchenko, V.Y.Gayvoronsky et al., J. Nanoelectron. Optoelectron., 9, 432 (2014). https://doi.org/10.1166/jno.2014.1593

20. V.A.Skryshevsky, Yu.S.Milovanov, I.V.Gavrilchenko et al., Phys. Status Solidi A, 212, 1941 (2015). https://doi.org/10.1002/pssa.201532101

Current number: