Вы здесь

Funct. Mater. 2017; 24 (1): 127-137.

doi:https://doi.org/10.15407/fm24.01.127

About theoretical peculiarities of lowest excitations in modified nanodiamond color centers

A.V.Luzanov

SSI "Institute of Single Crystals", STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

The moderate-size carbon nanoclusters with paramagnetic color centers are studied by using a rather good-working simplified scheme of CNDOL type. Various electronic structure aspects of the clusters are studied. These are the localization of molecular orbitas, the electronic excitation localization and charge-transfer structure of the lowest triplet-triplet transitions, spin density distributions and spin correlations in the ground and excited states. The comparison is made between the respective characteristics of the diamondoid with nitrogen-vacancy (NV-) and oxygen-vacancy color centers. It is shown that in the asymmetrical NV- center, significant variations of excitation localization and charge/spin transfer take place whereas the energetic properties vary slightly.

Keywords: 
color center, orbital localization, triplet-triplet transitions, excitation indices, charge transfer, spin density.
References: 

1. A.V.Luzanov, Functional Materials, 22, 514 (2015). https://doi.org/10.15407/fm22.04.514

2. A.V.Luzanov, O.A.Zhikol, Functional Materials, 23, 63 (2016). https://doi.org/10.15407/fm23.01.063

3. A.V.Luzanov, O.A.Zhikol, I.V.Omelchenko et al., Functional Materials, 23, 268 (2016). https://doi.org/10.15407/fm23.02.268

4. A.V.Luzanov, Functional Materials, in press. 23, 599 (2016).

5. L.A.Montero, L.Alfonso, J.R.Alvarez, E.Perez, Int. J. Quantum. Chem, 37, 465 (1990). https://doi.org/10.1002/qua.560370416

6. L.A.Montero-Cabrera, U.Rohrig, J.A.Padron-Garcia et al., J. Chem. Phys., 127, 145102 (2007). https://doi.org/10.1063/1.2761869

7. A.L.Montero-Alejo, M.E.Fuentes, E.Menendez-Proupin et al., Phys. Rev. B, 81, 235409 (2010). https://doi.org/10.1103/PhysRevB.81.235409

8. A.L.Montero-Alejo, E.Menendez-Proupin, M.E.Fuentes et al., Phys. Chem. Chem. Phys., 14, 13058 (2012). https://doi.org/10.1039/c2cp41979c

9. L.Komzsik, The Lanczos Method: Evolution and Application, SIAM, Philadelphia (2003).

10. M.J.Frisch, G.W.Trucks, J.B.Schlegel et al., Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA (2010).

11. J.P.Goss, P.R.Briddon, M.J.Rayson et al., Phys. Rev. B, 72, 035214 (2005). https://doi.org/10.1103/PhysRevB.72.035214

12. Y.G.Zhang, Z.Tang, X.G.Zhao et al., Appl. Phys. Lett., 105, 052107 (2014). https://doi.org/10.1063/1.4892654

13. A.L.Pushkarchuk, S.A.Kuten, V.A.Pushkarchuk et al., in: Proc. XIV Int. Conf. on Quantum Optics and Quantum Information, Minsk, Belarus (2015). p.48.

14. B.N.Plakhutin, E.R.Davidson, J. Chem. Phys., 132, 184110 (2010); E.R.Davidson, AIP Conf. Proc., 1504, 5 (2012).

15. E.J.Baerends, O.V.Gritsenko, R.van Meer, Phys. Chem. Chem. Phys., 15, 16408 (2013). https://doi.org/10.1039/c3cp52547c

16. C.Longuet-Higgins, J.N.Murrell, Proc. Phys. Soc., A68, 901, 969 (1955).

17. A.V.Luzanov, A.A.Sukhorukov, V.E.Umanski, Theor. Experim. Chem., 10, 354 (1974). https://doi.org/10.1007/BF00526670

18. A.V.Luzanov, V.F.Pedash, Theor. Experim. Chem., 15, 338 (1979). https://doi.org/10.1007/BF00520694

19. A.V.Luzanov, Russ. Chem. Rev., 49, 1033 (1980). https://doi.org/10.1070/RC1980v049n11ABEH002525

20. A.V.Luzanov, O.A.Zhikol, in: Practical Aspects of Computational Chemistry I: An Overview of the Last Two Decades and Current Trends, ed. by J.Leszczynski, M.K.Shukla, Springer, New York (2012), p.415.

21. S.A.Bappler, F.Plasser, M.Wormit, A.Dreuw, Phys. Rev., A90, 052521 (2014).

22. L.Blancafort, A.A.Voityuk, J. Chem. Phys., 140, 095102 (2014). https://doi.org/10.1063/1.4867118

23. T.Etienne, X.Assfeld, A.Monari, J. Chem. Theory Comput., 10, 3896 (2014); T.Etienne, J. Chem. Phys., 142, 244103 (2015). https://doi.org/10.1063/1.4922780

24. A.V.Luzanov, D.Casanova, X.Feng, A.I.Krylov, J. Chem. Phys., 142, 224104 (2015). https://doi.org/10.1063/1.4921635

25. J.Wrachtrup, S.Y.Kilin, A.P.Nizovtsev, Opt. Spectrosc. 91, 429 (2001); A.P.Nizovtsev, S.Ya.Kilin, A.L.Pushkarchuk et al., New J. Phys., 16, 083014 (2014). https://doi.org/10.1088/1367-2630/16/8/083014

26. A.Gali, M.Fyta, E.Kaxiras, Phys. Rev. B, 77, 155206 (2008). https://doi.org/10.1103/PhysRevB.77.155206

27. I.Kratochvilova, A.Kovalenko, A.Taylor et al., Phys. Stat. Sol. (a), 207, 2045 (2010). https://doi.org/10.1002/pssa.201000012

28. W.G.Penney, Proc. Roy. Soc. A, 158, 306 (1937). https://doi.org/10.1098/rspa.1937.0022

29. A.V.Luzanov, Y.F.Pedash, S.Mohamad, Theor. Experim. Chem. 29, 485 (1989); A.V.Luzanov, O.V.Prezhdo, Mol. Phys., 105, 2879 (2007). https://doi.org/10.1080/00268970701725039

30. A.E.Clark, E.R.Davidson, J. Chem. Phys., 115, 7382 (2001); A.E.Clark, E.R.Davidson, Mol. Phys, 100, 373 (2002). https://doi.org/10.1080/00268970110095651

31. A.V.Luzanov, in: Practical Aspects of Computational Chemistry IV, ed. by J.Leszczynski, M.K.Shukla, Springer, New York (2016), p.151.

32. L.N.Kantorovich, J. Phys. C, 21, 5041 (1988). https://doi.org/10.1088/0022-3719/21/29/004

33. C.Pisani, R.Orlando, R.Nada, in; Cluster Models for Surface and Bulk Phenomena, ed. by G.Pacchioni, P.S.Bagus, F.Parmigiani, NATO ASI Series B, v.283, Plenum, New-York (1992), p.515.

34. B.Paulus, Phys. Rep., 428, 1 (2006). https://doi.org/10.1016/j.physrep.2006.01.003

35. F.Libisch, C.Huang, E.A.Carter, Acc. Chem. Res., 47, 2768 ( 2014).

36. H.Lin, D.G.Truhlar, Theor. Chem. Acc., 117, 185 (2007). https://doi.org/10.1007/s00214-006-0143-z

37. A.V.Luzanov, Theor. Experim. Chem., 22, 489 (1987). https://doi.org/10.1007/BF00522533

38. P.D.Dacre, C.J.Watts, G.R.J.Williams, R.McWeeny, Mol. Phys., 30, 1203 (1975). https://doi.org/10.1080/00268977500102741

39. M.M.Mestechkin, Metod Matritsy Plotnosti v Teorii Molekul, Naukova Dumka, Kiev (1977) [in Russian].

40. B.N.Parlett, Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, New York (1980).

41. G.H.Golub, C.F.Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore (1990).

42. D.S.Watkins, The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM, Philadelphia (2007). https://doi.org/10.1137/1.9780898717808

Current number: