Funct. Mater. 2017; 24 (1): 154-161.

doi:https://doi.org/10.15407/fm24.01.154

Formation of porous zinc nanosystems using direct and reverse flows of DC magnetron sputtering

V.M.Latyshev, V.I.Perekrestov, A.S.Kornyushchenko, I.V.Zahaiko

Sumy State University, 2 Rimsky-Korsakov Str., 40007 Sumy, Ukraine

Abstract: 

The work is devoted to comparative analysis of two technological solutions for Zn nanosystems formation which have been implemented on the basis of direct-current magnetron sputtering. In the first case, conventional magnetron sputtering was used and direct flows were deposited on the substrate positioned in the front of a sputterer. In the second case, reverse flows were used and the substrate was located inside the magnetron sputterer. It has been shown experimentally, that the second technological approach gives more reproducible results as compared to the classical one. In addition, usage of the reverse flows leads to significant increase in the nanosystems deposition rates.

Keywords: 
metals, zinc, nanomaterials, magnetron sputtering, crystal morphology.
References: 

1. A.K.M.Kafi, A.Ahmadalinezhad, J.Wang et al., Biosens. Bioelectron., 25, 2458 (2010). https://doi.org/10.1016/j.bios.2010.04.006

2. A.Abburi, N.Abrams, W.J.Yeh, J. Porous Mat., 19, 543 (2012). https://doi.org/10.1007/s10934-011-9503-8

3. K.Wegner, H.C.Ly, R.J.Weiss et al., Int. J. Hydrogen Energ., 31, 55 (2006). https://doi.org/10.1016/j.ijhydene.2005.03.006

4. V.Bansal, H.Jani, J.D.Plessis et al., Adv. Mater., 20, 717 (2008). https://doi.org/10.1002/adma.200701297

5. X.H.Huang, X.H.Xia, Y.F.Yuan et al., Electrochem. Acta, 56, 4960 (2011). https://doi.org/10.1016/j.electacta.2011.03.129

6. X.G.Zhang, J. Power Sources, 163, 591 (2006). https://doi.org/10.1016/j.jpowsour.2006.09.034

7. W.Yuan, Y.Tang, X.Yang et al., Appl. Energ., 94, 309 (2012). https://doi.org/10.1016/j.apenergy.2012.01.073

8. D.Yuvaraj, R.K.Narasimha, K.Barai, Solid State Commun., 149, 349 (2009). https://doi.org/10.1016/j.ssc.2008.12.024

9. X.Wen, Y.Fang, S.Yang, Angew. Chem. Int. Ed., 44, 3562 (2005). https://doi.org/10.1002/anie.200500438

10. W.S.Khan, C.Cao, J.Zhong et al., Mater. Lett., 64, 2273 (2010). https://doi.org/10.1016/j.matlet.2010.07.034

11. B.Mun, D.Lee, Langmuir, 29, 6174 (2013). https://doi.org/10.1021/la400765j

12. R.Gazia, A.Chiodoni, S.Bianco et al., Thin Solid Films, 524, 107 (2012). https://doi.org/10.1016/j.tsf.2012.09.076

13. A.Khan, M.E.Kordesch, Physica E, 33, 88 (2006). https://doi.org/10.1016/j.physe.2005.11.009

14. Y.J.Chen, B.Chi, H.Z.Zhang et al., Mater. Lett., 61, 144 (2007). https://doi.org/10.1016/j.matlet.2006.04.044

15. C.Fournier, F.Favier, Electrochem. Commun., 13, 1252 (2011). https://doi.org/10.1016/j.elecom.2011.08.031

16. D.Pradhan, S.Sindhwani, K.T.Leung, J. Phys. Chem. C, 113, 15788 (2009). https://doi.org/10.1021/jp906198h

17. R.Cong, Q.Wang, J.Zhang et al., Chem. Phys., 129, 611 (2011).

18. S.Kim, M.C.Jeong, B.Y.Oh et al., J. Cryst. Growth, 290, 485 (2006). https://doi.org/10.1016/j.jcrysgro.2006.01.043

19. L.I.Maissel, R.Glang, Handbook of Thin Film Technology, McGrawHillHook, New York (1970).

20. V.I.Perekrestov, Y.O.Kosminska, A.S.Kornyushchenko et al., Physica B, 411, 140 (2013). https://doi.org/10.1016/j.physb.2012.11.036

21. V.I.Perekrestov, A.S.Kornyushchenko, V.V.Natalich, Solid State Sci., 33, 12 (2014). https://doi.org/10.1016/j.solidstatesciences.2014.04.001

22. V.I.Perekrestov, A.S.Kornyushchenko, Y.O.Kosminska et al., Appl. Surf. Sci., 316, 155 (2014). https://doi.org/10.1016/j.apsusc.2014.07.187

23. V.I.Perekrestov, A.I.Olemskoi, Y.O.Kosminska et al., Phys. Lett. A, 373, 3386 (2009). https://doi.org/10.1016/j.physleta.2009.07.032

24. V.I.Perekrestov, A.S.Kornyushchenko, Y.A.Kosminskaya, Tech. Phys., 53, 1364 (2008). https://doi.org/10.1134/S1063784208100174

25. V.I.Perekrestov, Y.O.Kosminska, A.S.Kornyushchenko et al., J. Porous Mater., 20, 967 (2013). https://doi.org/10.1007/s10934-013-9674-6

26. V.I.Perekrestov, A.S.Kornyushchenko, S.Ostendorp et al., Phys. Status Solidi B, 252, 397 (2015). https://doi.org/10.1002/pssb.201451266

27. A.S.Kornyushchenko, A.H.Jayatissa, V.V.Natalich et al., Thin Solid Films, 604, 48 (2016). https://doi.org/10.1016/j.tsf.2016.03.017

28. A.G.Znamenskii, V.A.Marchenko, Tech. Phys., 43, 766 (1998). https://doi.org/10.1134/1.1259071

29. M.M.Nikitin, Fiz. Khim. Obrab. Mater., 2, 27 (2011).

30. B.I.Moskalev, Discharge with Hollow Cathode, Energiya, Moscow (1969) [in Russian].

31. V.I.Perekrestov, S.N.Kravchenko, Instrum. Exp. Tech., 45, 404 (2002). https://doi.org/10.1023/A:1016083909330

32. J.G.Han, J. Phys. D, 42, 043001 (2009). https://doi.org/10.1088/0022-3727/42/4/043001

33. V.Schmidt, S.Senz, U.Gosele, Phys. Rev. B, 75, 045335 (2007). https://doi.org/10.1103/PhysRevB.75.045335

34. S.M.Roper, S.H.Davis, S.A.Norris et al., J. Appl. Phys., 102, 034304 (2007). https://doi.org/10.1063/1.2761836

35. E.J.Schwalbach, P.W.Voorhees, App. Phys Lett., 95, 063105 (2009). https://doi.org/10.1063/1.3204543

Current number: