Funct. Mater. 2017; 24 (2): 237-243.

doi:https://doi.org/10.15407/fm24.02.237

Influence of Ca and Mg doping on the microstructure and optical properties of YAG ceramics

M.A.Chaika, O.M.Vovk, A.G.Doroshenko, V.K.Klochkov, P.V.Mateychenko, S.V.Parkhomenko, O.G.Fedorov

STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

Ceramics of yttrium aluminum garnet doped with Ca or Mg are produced by solid state reaction under vacuum sintering. The influence of CaO and MgO additives themselves on microstructure and optical properties of YAG ceramics is investigated. Ceramics of Mg-doped YAG is transparent while ceramics of Ca-doped YAG is fully opaque due to high concentration of residual porosity into later. Changing concentration of Ca affects significantly on the grain growth, the average grain size increase with increasing of Ca concentration. Changing concentration of Mg from 0.05 to 0.5 at.% doesn't influence on grain size of the ceramics. It is proposed that liquid appears on the grain boundaries of the ceramics due to CaO additive. This liquid causes increasing the diffusion of components through the grain boundaries that speed up the grain growth and traps the pores while no such liquid exists for MgO additive. This difference is determined by the different ways of interaction of CaO and MgO with the basic YAG components Al2O3 and Y2O3. It is determined that the Mg concentration ranges in vicinity of 0.15 at.% Mg to produce Mg:YAG ceramics of higher transparency.

Keywords: 
Yttrium aluminum garnet ceramics, CaO additive, MgO additive, solid state reaction, vacuum sintering, microstructure, transparency.
References: 

1. Q.Liu, F.Lu, M.Gong et al., Laser Phys. Lett., 4, 30 (2007). https://doi.org/10.1002/lapl.200610067

2. D.Garbuzov, I.Kudryashov, M.Dubinskii, Proc. SPIE, 5792, 88 (2005). https://doi.org/10.1117/12.603180

3. P.F.Zhu, C.M.Zhang, P.Song et al., Opt. Spectrosc., 118, 623 (2015). https://doi.org/10.1134/S0030400X15040244

4. H.Injeyan, G.Goodno, McGraw Hill Professional (2011).

5. J.Lu, M.Prabhu, J.Song et al., Appl. Phys. B, 71, 469 (2000). https://doi.org/10.1007/s003400000394

6. J.Lu, J.Song, M.Prabhu et al., Jpn. J. Appl. Phys., 39, L1048 (2000).

7. N.Angert, N.Borodin, V.Garmash et al., Zh. Kvantovaya Elektronika, 18, 73 (1988).

8. S.Zhu, Q.He, S.Wang et al., J. Laser Appl., 26, 032009 (2014). https://doi.org/10.2351/1.4870435

9. A.Sugimoto, Y.Nobe, K.Yamagishi, J. Cryst. Growth, 140, 349 (1994). https://doi.org/10.1016/0022-0248(94)90309-3

10. H.Yagi, K.Takaichi, K.Ichi Ueda et al., Opt. Mater., 29, 392 (2006). https://doi.org/10.1016/j.optmat.2005.08.035

11. A.Ikesue, K.Yoshida, T.Yamamoto et al., J. Am. Ceram. Soc., 80, 1517 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03011.x

12. A.Ikesue, T.Kinoshita, K.Kamata et al., J. Am. Ceram. Soc., 78, 1033 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08433.x

13. T.Zhou, L.Zhang, H.Yang et al., J. Am. Ceram. Soc., 98, 2459 (2015). https://doi.org/10.1111/jace.13616

14. M.A.Chaika, O.M.Vovk, N.A.Safronova et al., Functional Materials, 26, 398 (2016). https://doi.org/10.15407/fm23.03.398

15. R.Yavetskiy, V.Baumer, A.Doroshenko et al., J. Cryst. Growth., 401, 839 (2014). https://doi.org/10.1016/j.jcrysgro.2014.01.034

16. H.Yagi, T.Yanagitani, T.Numazawa et al., Ceram. Int., 33, 711 (2007). https://doi.org/10.1016/j.ceramint.2005.12.007

17. M.Springis, A.Pujats, J.Valbis, Condens. Matter, 3, 54 (1991). https://doi.org/10.1088/0953-8984/3/28/021

18. Yu.P.Udalov, Z.S.Appen, V.V.Parshina, Zh. Neorg. Chimii, 24, 1549 (1979).

19. R.W.Nurse, J.H.Welch, A.J.Majumdar, Trans. Br. Ceram. Soc., 64, 409 (1965).

20. S.Wang, T.Akatsu, Y.Tanabe et al., J. Mater. Sci. Lett., 18, 1325 (1999). https://doi.org/10.1023/A:1006617912880

21. B.Hallstedt, J. Am. Ceram. Soc. , 75, 1497 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb04216.x

22. Y.Du, Z.Jin, J. Alloys Compd., 176, L1 (1991).

23. H.Yang, X.Qin, J.Zhang et al., J. Alloys Compd., 509, 5274 (2011). https://doi.org/10.1016/j.jallcom.2010.11.030

24. Z.Lu, T.Lu, N.Wei et al., Opt. Mater., 47, 292 (2015). https://doi.org/10.1016/j.optmat.2015.05.043

25. Z.Lu, T.Lu, N.Wei et al., J. Wuhan University Technology-Mater. Sci. Ed., 28, 320 (2013). https://doi.org/10.1007/s11595-013-0686-5

26. Y.Li, S.Zhou, H.Lin et al., J. Alloys Compd., 502, 225 (2010).

https://doi.org/10.1016/j.jallcom.2010.04.151

Current number: