Funct. Mater. 2017; 24 (2): 250-255.

doi:https://doi.org/10.15407/fm24.02.250

Energy state and micromechanical properties of PbO-ZnO-B2O3 glass-ceramic functional coatings on AISI420 stainless steel substrate

Z.Duriagina1,2, T.Kovbasyuk1, T.Bialopiotrowicz2, S.Bespalov3

1Lviv Polytechnic National University, 12 Bandrera St., 79013, Lviv, Ukraine
2The John Paul II Catholic University of Lublin, Al. Raclawickie 14, 20-950 Lublin, Poland
3Presidium of National Academy of Sciences of Ukraine, 55 Volodymyrska St., 03150 Kyiv, Ukraine

Abstract: 

On AISI420 steel substrates with different roughness, PbO-ZnO-B2O3 glass crystalline functional coatings were synthesized by means of thick films method. The parameters of micro topography and values of free surface energy of the coatings and those of substrates surfaces have been investigated. The character of influence of substrates' micro topography and of free surface energy on the micromechanical properties of the synthesized coatings has been ascertained.

Keywords: 
thick films method, glass-crystalline functional coatings, PbO-ZnO-B<sub>2</sub>O<sub>3</sub> glass-crystallin.
References: 

1. S.A.Firstov, S.R.Ignatovich, I.M.Zakiev, Strength Mater., 41, 147 (2009). https://doi.org/10.1007/s11223-009-9116-5

2. B.Janczuk, T.Bialopiotrowicz, E.Chibowski et al., J. Mater. Sci., 25, 1682 (1990). https://doi.org/10.1007/BF01045370

3. Z.A.Duriagina, T.M.Kovbasyuk, S.A.Bespalov, Usp. Fiz. Met., 17, 29 (2016). https://doi.org/10.15407/ufm.17.01.029

4. N.M.Pavlushkin, M.A.Kalmanovskaya, Inorg. Mater., 12, 2042 (1976).

5. C.J.vanOss, L.Ju, M.K.Chaudhury et al., J. Colloid Interface Sci., 128, 313 (1989). https://doi.org/10.1016/0021-9797(89)90345-7

6. C.J.vanOss, Interfacial Forces in Aqueous Media, Dekker, New York (1994).

7. T.Bialopiotrowicz, J. Adhesion Sci. Technol., 21, 1539 (2007). https://doi.org/10.1163/156856107782793230

8. T.Bialopiotrowicz, J. Adhesion Sci. Technol., 21, 1557 (2007). https://doi.org/10.1163/156856107782793221

9. T.Bialopiotrowicz, J. Adhesion Sci. Technol., 23, 799 (2009). https://doi.org/10.1163/156856108X396327

10. T.Bialopiotrowicz, J. Adhesion Sci. Technol., 23, 815 (2009). https://doi.org/10.1163/156856108X396336

11. C.Della Volpe, S.Siboni, J. Colloid Interface Sci., 95, 121 (1997). https://doi.org/10.1006/jcis.1997.5124

12. B.Janczuk, T.Bialopiotrowicz, A.Zdziennicka, J. Colloid Interface Sci., 211, 96 (1999). https://doi.org/10.1006/jcis.1998.5990

13. A.I.Ermolaeva, Glass Phys. Chem., 27, 306 (2001). https://doi.org/10.1023/A:1011360025333

14. J.Honkamo, J.Hannu, H.Jantunen et al., J. Electroceram., 18, 175 (2007). https://doi.org/10.1007/s10832-007-9023-8

15. Z.A.Duryagina, T.M.Kovbasyuk, S.A.Bespalov et al., Mater. Sci., 52, 50 (2016). https://doi.org/10.1007/s11003-016-9925-1

16. Z.A.Duriagina, T.M.Kovbasyuk, M.Zagula-Yavorska et al., Metallofiz. Noveishie Tekhnol., 38, 1367 (2016). https://doi.org/10.15407/mfint.38.10.1367

17. Z.Duriagina, T.Kovbasyuk, M.Zagula-Yavorska et al., Powder Metall. Met. C., 55, 95 (2016).

Current number: