Вы здесь

Funct. Mater. 2017; 24 (2): 270-277.

doi:https://doi.org/10.15407/fm24.02.270

Basis set effects on the structure of isomeric nitroanilines: the role of basis set expansion, additional diffuse and polarization functions within the frame of DFT and MP2 approaches

I.V.Omelchenko1, O.V.Shishkin1,2

1STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine

Abstract: 

Influence of the basis set on the geometrical parameters and structural aromaticity indices of isomeric nitroanilines was studied in the framework of MP2 and DFT methods (M06-2X functional). Series of cc-pV(N)Z and def2-(N)ZVP basis sets of double-ζ, triple-ζ, and quadruple-ζ quality augmented with additional diffuse and/or polarization functions were investigated. It was found that using the basis sets of double-ζ quality can be the source of the significant error in MP2 calculations. Important role of additional diffuse functions and negligible influence of additional polarization functions was shown.

Keywords: 
structural aromaticity indices, isomeric nitroanilines, MP2 calculation.
References: 

1. F.Jensen, Introduction to Computational Chemistry, 2nd ed., John Wiley & Sons, NY (2007).

2. L.Piela, Ideas of Quantum Chemistry, Elsevier, Amsterdam (2007).

3. D.Cremer, J.Chem. Phys., 69, 4440 (1978). https://doi.org/10.1063/1.436434

4. P.Pulay, J.-G.Lee, J.E.Boggs, J. Chem. Phys., 79, 3382 (1983). https://doi.org/10.1063/1.446240

5. D.S.Marynick, D.A.Dixon, J. Phys. Chem., 86, 914 (1982). https://doi.org/10.1021/j100395a015

6. K.Capelle, arXiv.org 69 (2002).

7. D.Avci, A.Basoglu, Y.Atalay, Int. J. Quant. Chem., 111, 130 (2011). https://doi.org/10.1002/qua.22416

8. M.Y.Balakina, S.E.Nefediev, Comp. Mat. Sci., 38, 467 (2007). https://doi.org/10.1016/j.commatsci.2005.05.011

9. A.N.Rashid, J. Mol. Struct.:THEOCHEM, 681, 57 (2004).

10. E.R.Davidson, B.E.Eichinger, B.H.Robinson, Opt. Mater., 29, 360 (2006). https://doi.org/10.1016/j.optmat.2006.03.031

11. V.J.Docherty, D.Pugh, J.O.Morley, J. Chem. Soc., Faraday Transact., 2, 1179 (1985). https://doi.org/10.1039/f29858101179

12. W.Bartkowiak, R.Zalesny, W.Niewodniczanski et al., J. Phys. Chem. A, 105, 10702 (2001). https://doi.org/10.1021/jp010682s

13. P.Nandi, T.Chattopadhyay, S.Bhattacharyya, J. Mol. Struct.:THEOCHEM, 545, 119 (2001).

14. W.M.Faustino, D.V.Petrov, Chem. Phys. Lett., 365, 170 (2002). https://doi.org/10.1016/S0009-2614(02)01429-X

15. P.Chopra, L.Carlacci, H.F.King, P.N.Prasad, J. Phys. Chem., 93, 7120 (1989). https://doi.org/10.1021/j100357a020

16. C.Daniel, M.Dupuis, Chem. Phys. Lett., 171, 209 (1990). https://doi.org/10.1016/0009-2614(90)85228-5

17. H.Agren, O.Vahtras, H.Koch et al., J. Chem. Phys., 98, 6417 (1993). https://doi.org/10.1063/1.465099

18. G.Schultz, G.Portalone, F.Ramondo et al., Struct. Chem., 7, 59 (1996). https://doi.org/10.1007/BF02275450

19. S.Di Bella, G.Lanza, I.Fragala et al., J. Am. Chem. Soc., 119, 3003 (1997). https://doi.org/10.1021/ja963490x

20. V.Moliner, P.Escribano, E.Peris, New J. Chem., 22, 387 (1998). https://doi.org/10.1039/a708755a

21. W.Bartkowiak, T.Misiaszek, Chem. Phys., 261, 353 (2000). https://doi.org/10.1016/S0301-0104(00)00262-7

22. J.Lipinski, W.Bartkowiak, Chem. Phys., 245, 263 (1999). https://doi.org/10.1016/S0301-0104(99)00102-0

23. P.Salek, O.Vahtras, T.Helgaker, H.Agren, J. Chem. Phys., 117, 9630 (2002). https://doi.org/10.1063/1.1516805

24. M.Y.Balakina, O.D.Fominykh, Int. J. Quant. Chem., 107, 2426 (2007). https://doi.org/10.1002/qua.21371

25. I.A.Mikhailov, M.Musial, A.E.Masunov, Comp. Theor. Chem., 1019, 23 (2013). https://doi.org/10.1016/j.comptc.2013.06.032

26. S.Frutos-Puerto, M.A.Aguilar, I.Fdez Galvan, J. Phys. Chem. B, 117, 2466 (2013). https://doi.org/10.1021/jp310964k

27. S.Sok, S.Y.Willow, F.Zahariev, M.S.Gordon, J. Phys. Chem. A, 115, 9801 (2011). https://doi.org/10.1021/jp2045564

28. N.J.DeYonker, T.R.Cundari, A.K.Wilson et al., J. Mol. Struct., 775, 77 (2006). https://doi.org/10.1016/j.theochem.2006.08.018

29. M.in het Panhuis, R.W.Munn, P.L.A.Popelier, J. Chem. Phys., 120, 11479 (2004). https://doi.org/10.1063/1.1752879

30. I.D.L.Albert, T.J.Marks, M.A.Ratner, J. Phys. Chem., 100, 9714 (1996). https://doi.org/10.1021/jp960860v

31. H.Reis, A.Grzybowski, M.G.Papadopoulos, J. Phys. Chem. A, 109, 10106 (2005). https://doi.org/10.1021/jp052875b

32. I.V.Omelchenko, O.V.Shishkin, L.Gorb et al., Struct. Chem., 23, 1585 (2012). https://doi.org/10.1007/s11224-012-9971-8

33. D.Asturiol, M.Duran, P.Salvador, J. Chem. Phys., 128, 144108 (2008). https://doi.org/10.1063/1.2902974

34. D.Asturiol, M.Duran, P.Salvador, J. Chem. Theor. Comp., 5, 2574 (2009). https://doi.org/10.1021/ct900056u

35. C.Moller, M.S.Plesset, Phys.Rev., 46, 618 (1934). https://doi.org/10.1103/PhysRev.46.618

36. Y.Zhao, D.G.Truhlar, Theor. Chem. Acc., 119, 525 (2008). https://doi.org/10.1007/s00214-007-0401-8

37. R.A.Kendall, T.H.Dunning, R.J.Harrison, J. Chem. Phys., 96, 6796 (1992). https://doi.org/10.1063/1.462569

38. K.Eichkorn, F.Weigend, O.Treutler, R.Ahlrichs, Theor. Chem. Acc., 97, 119 (1997). https://doi.org/10.1007/s002140050244

39. C.W.Bird, Tetrahedron, 48, 335 (1992). https://doi.org/10.1016/S0040-4020(01)88145-X

40. M.K.Cyranski, T.M.Krygowski, Tetrahedron, 55, 6205 (1999). https://doi.org/10.1016/S0040-4020(99)00264-1

41. W.Gordy, J. Chem. Phys., 15, 305 (1947). https://doi.org/10.1063/1.1746501

42. M.J.Frisch et al., Gaussian 09, revision B (2009).

43. D.Feller, J. Comp. Chem., 17, 1571 (1996). https://doi.org/10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P

44. K.L.Schuchardt, B.T.Didier, T.Elsethagen et al., J. Chem. Inf. Mod., 47, 1045 (2007). https://doi.org/10.1021/ci600510j

Current number: