Funct. Mater. 2017; 24 (2): 290-297.

doi:https://doi.org/10.15407/fm24.02.290

Investigation of the effect of water content and degree of compaction on the shear strength of clay soil material

Zhang Huzhu1,2, Liu Hanbing1, Wang Jing2, Dong Weizhi2

1 College of Traffic, Jilin University, Changchun, Jilin, 130022, China
2 School of Traffic Science and Engineering, Jilin Jianzhu University, Changchun, Jilin, 130118, China

Abstract: 

The effect of water on compacted clay material with the use of triaxial compression was studied, and models for predicting shear strength parameters were also developed. The results show that cohesion decreases exponentially with increasing water content and exponentially increases with increasing degree of compaction. The angle of internal friction decreases in a convex quadratic parabolic law with increasing water content and increases with a concave quadratic parabolic law with an increase in the degree of compaction; Cohesion and internal friction angle are two-dimensional quadratic functions of water content and degree of compaction and have relatively large values of the shear strength parameter.

Keywords: 
compacted clayey soil material, shear strength, water content, degree of compaction, cohesion, internal friction angle.
References: 

1. F.Jensen, Introduction to Computational Chemistry, 2nd ed., John Wiley & Sons, NY (2007).

2. L.Piela, Ideas of Quantum Chemistry, Elsevier, Amsterdam (2007).

3. D.Cremer, J.Chem. Phys., 69, 4440 (1978). https://doi.org/10.1063/1.436434

4. P.Pulay, J.-G.Lee, J.E.Boggs, J. Chem. Phys., 79, 3382 (1983). https://doi.org/10.1063/1.446240

5. D.S.Marynick, D.A.Dixon, J. Phys. Chem., 86, 914 (1982). https://doi.org/10.1021/j100395a015

6. K.Capelle, arXiv.org 69 (2002).

7. D.Avci, A.Basoglu, Y.Atalay, Int. J. Quant. Chem., 111, 130 (2011). https://doi.org/10.1002/qua.22416

8. M.Y.Balakina, S.E.Nefediev, Comp. Mat. Sci., 38, 467 (2007). https://doi.org/10.1016/j.commatsci.2005.05.011

9. A.N.Rashid, J. Mol. Struct.:THEOCHEM, 681, 57 (2004).

10. E.R.Davidson, B.E.Eichinger, B.H.Robinson, Opt. Mater., 29, 360 (2006). https://doi.org/10.1016/j.optmat.2006.03.031

11. V.J.Docherty, D.Pugh, J.O.Morley, J. Chem. Soc., Faraday Transact., 2, 1179 (1985). https://doi.org/10.1039/f29858101179

12. W.Bartkowiak, R.Zalesny, W.Niewodniczanski et al., J. Phys. Chem. A, 105, 10702 (2001). https://doi.org/10.1021/jp010682s

13. P.Nandi, T.Chattopadhyay, S.Bhattacharyya, J. Mol. Struct.:THEOCHEM, 545, 119 (2001).

14. W.M.Faustino, D.V.Petrov, Chem. Phys. Lett., 365, 170 (2002). https://doi.org/10.1016/S0009-2614(02)01429-X

15. P.Chopra, L.Carlacci, H.F.King, P.N.Prasad, J. Phys. Chem., 93, 7120 (1989). https://doi.org/10.1021/j100357a020

16. C.Daniel, M.Dupuis, Chem. Phys. Lett., 171, 209 (1990). https://doi.org/10.1016/0009-2614(90)85228-5

17. H.Agren, O.Vahtras, H.Koch et al., J. Chem. Phys., 98, 6417 (1993). https://doi.org/10.1063/1.465099

18. G.Schultz, G.Portalone, F.Ramondo et al., Struct. Chem., 7, 59 (1996). https://doi.org/10.1007/BF02275450

19. S.Di Bella, G.Lanza, I.Fragala et al., J. Am. Chem. Soc., 119, 3003 (1997). https://doi.org/10.1021/ja963490x

20. V.Moliner, P.Escribano, E.Peris, New J. Chem., 22, 387 (1998). https://doi.org/10.1039/a708755a

21. W.Bartkowiak, T.Misiaszek, Chem. Phys., 261, 353 (2000). https://doi.org/10.1016/S0301-0104(00)00262-7

22. J.Lipinski, W.Bartkowiak, Chem. Phys., 245, 263 (1999). https://doi.org/10.1016/S0301-0104(99)00102-0

23. P.Salek, O.Vahtras, T.Helgaker, H.Agren, J. Chem. Phys., 117, 9630 (2002). https://doi.org/10.1063/1.1516805

24. M.Y.Balakina, O.D.Fominykh, Int. J. Quant. Chem., 107, 2426 (2007). https://doi.org/10.1002/qua.21371

25. I.A.Mikhailov, M.Musial, A.E.Masunov, Comp. Theor. Chem., 1019, 23 (2013). https://doi.org/10.1016/j.comptc.2013.06.032

26. S.Frutos-Puerto, M.A.Aguilar, I.Fdez Galvan, J. Phys. Chem. B, 117, 2466 (2013). https://doi.org/10.1021/jp310964k

27. S.Sok, S.Y.Willow, F.Zahariev, M.S.Gordon, J. Phys. Chem. A, 115, 9801 (2011). https://doi.org/10.1021/jp2045564

28. N.J.DeYonker, T.R.Cundari, A.K.Wilson et al., J. Mol. Struct., 775, 77 (2006). https://doi.org/10.1016/j.theochem.2006.08.018

29. M.in het Panhuis, R.W.Munn, P.L.A.Popelier, J. Chem. Phys., 120, 11479 (2004). https://doi.org/10.1063/1.1752879

30. I.D.L.Albert, T.J.Marks, M.A.Ratner, J. Phys. Chem., 100, 9714 (1996). https://doi.org/10.1021/jp960860v

31. H.Reis, A.Grzybowski, M.G.Papadopoulos, J. Phys. Chem. A, 109, 10106 (2005). https://doi.org/10.1021/jp052875b

32. I.V.Omelchenko, O.V.Shishkin, L.Gorb et al., Struct. Chem., 23, 1585 (2012). https://doi.org/10.1007/s11224-012-9971-8

33. D.Asturiol, M.Duran, P.Salvador, J. Chem. Phys., 128, 144108 (2008). https://doi.org/10.1063/1.2902974

34. D.Asturiol, M.Duran, P.Salvador, J. Chem. Theor. Comp., 5, 2574 (2009). https://doi.org/10.1021/ct900056u

35. C.Moller, M.S.Plesset, Phys.Rev., 46, 618 (1934). https://doi.org/10.1103/PhysRev.46.618

36. Y.Zhao, D.G.Truhlar, Theor. Chem. Acc., 119, 525 (2008). https://doi.org/10.1007/s00214-007-0401-8

37. R.A.Kendall, T.H.Dunning, R.J.Harrison, J. Chem. Phys., 96, 6796 (1992). https://doi.org/10.1063/1.462569

38. K.Eichkorn, F.Weigend, O.Treutler, R.Ahlrichs, Theor. Chem. Acc., 97, 119 (1997). https://doi.org/10.1007/s002140050244

39. C.W.Bird, Tetrahedron, 48, 335 (1992). https://doi.org/10.1016/S0040-4020(01)88145-X

40. M.K.Cyranski, T.M.Krygowski, Tetrahedron, 55, 6205 (1999). https://doi.org/10.1016/S0040-4020(99)00264-1

41. W.Gordy, J. Chem. Phys., 15, 305 (1947). https://doi.org/10.1063/1.1746501

42. M.J.Frisch et al., Gaussian 09, revision B (2009).

43. D.Feller, J. Comp. Chem., 17, 1571 (1996). https://doi.org/10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P

44. K.L.Schuchardt, B.T.Didier, T.Elsethagen et al., J. Chem. Inf. Mod., 47, 1045 (2007).

https://doi.org/10.1021/ci600510j

Current number: