Вы здесь

Funct. Mater. 2017; 24 (2): 298-302.

doi:https://doi.org/10.15407/fm24.02.298

Formation of complex phosphates K2MIIISn(PO4)3 from solutions in melts under crystallization conditions

I.V.Zatovsky1,2, N.S.Slobodyanik2, T.I.Ushchapivska3, W.Han1

1College of Physics, Jilin University, 2699 Kvanchjin Str., 130012 Changchun, China
2Department of Inorganic Chemistry, T.Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., 01601 Kyiv, Ukraine
3National University of Life and Environmental Sciences of Ukraine, 17 Heroyiv Oborony Str., 03041 Kyiv, Ukraine

Abstract: 

This article studies the regularities of formation of isostructural to langbeinite phosphates from solutions in melts under crystallization conditions for K2O-P2O5-M<m^>III2O3-SnO2 (MIII - Fe, Cr) and K2O-P2O5-LnF3-SnO2 (Ln - Y, REE) systems. Based on X-ray powder diffraction method the phase composition of synthesized samples and lattice parameters have been determined for a number of new compounds with common composition K2MIIISn(PO4)3. Analysis of obtained results shows that the crystallochemical criterion for formation of langbeinite-type framework on the basis of different multivalent metals is the difference in their ionic radii up to 35 %.

Keywords: 
complex phosphates, langbeinite, flux crystallization, XRD.
References: 

1. S.Gin, A.Abdelouas, L.J.Criscenti et al., Mater. Today, 16, 243 (2013). https://doi.org/10.1016/j.mattod.2013.06.008

2. M.D.Kaminski, C.J.Mertz, M.Ferrandon et al., J. Nucl. Mater., 392, 510 (2009). https://doi.org/10.1016/j.jnucmat.2009.04.020

3. A.I.Orlova, A.K.Koryttseva, E.E.Loginova, Radiochemistry, 53, 51 (2011). https://doi.org/10.1134/S1066362211010073

4. V.I.Pet'kov, E.A.Asabina, A.A.Lukuttsov et al., Radiochemistry, 57, 632 (2015). https://doi.org/10.1134/S1066362215060119

5. S.P.Kumar, B.Gopal, J. Alloys .Comp., 657, 422 (2016). https://doi.org/10.1016/j.jallcom.2015.10.088

6. L.Shi, H.J.Seo, Opt. Express, 19, 7147 (2011). https://doi.org/10.1364/OE.19.007147

7. L.F.Niu, W.Liang, C.Z.Wu et al., Advan. Mater. Res., 936, 585 (2014). https://doi.org/10.4028/www.scientific.net/AMR.936.585

8. V.Chornii, Yu.Hizhnyi, S.G.Nedilko et al., Solid State Phenomena, 230, 55 (2015). https://doi.org/10.4028/www.scientific.net/SSP.230.55

9. N.S.Slobodyanik, K.V.Terebilenko, I.V.Ogorodnyk et al., Inorg. Chem., 51, 1380 (2012). https://doi.org/10.1021/ic201575v

10. I.V.Ogorodnyk, V.N.Baumer, I.V.Zatovsky et al., Acta Cryst. Sec. B., 63, 819 (2007). https://doi.org/10.1107/S0108768107049385

11. I.V.Ogorodnyk, I.V.Zatovsky, V.N.Baumer et al., Cryst. Res. Technol., 42, 1076 (2007). https://doi.org/10.1002/crat.200710961

12. A.Aatiq, B.Haggouch, R.Bakri, Powder Diffraction, 21, 214 (2006). https://doi.org/10.1154/1.2246229

13. I.V.Zatovsky, M.M.Yatskin, V.N.Baumer et al., Acta Cryst. Sec. E, 63, 199 (2007). https://doi.org/10.1107/S1600536807058588

1. H.-Y.Li, D.Zhao, Acta Cryst. Sec. E, 67, 56 (2011). https://doi.org/10.1107/S1600536811037263

15. R.D.Shannon, Acta Cryst. Sec. A, 32, 751 3(1976).

Current number: