Funct. Mater. 2017; 24 (2): 322-327.

doi:https://doi.org/10.15407/fm24.02.322

Study of Mn2+ and MnO4- products interaction in alkaline solution

D.S.Sofronov1, A.M.Odnovolova1, L.V.Gudzenko1, S.M.Desenko1,2, P.V.Mateychenko1, L.V.Rudenko3, A.M.Lebedynskiy4

1State Scientific Institution Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
3NTU Kharkiv Polytechnic Institute, 2 Kyrpychova Str., 61002 Kharkiv, Ukraine
4Institute for Scintillation Materials, Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61178 Kharkiv, Ukraine

Abstract: 

Interaction of Mn2+ ions with MnO4- in alkaline medium is considered. The main component of this interaction is manganese oxyhydroxide MnO(OH) and not manganese dioxide, that is revealed by means of X-ray diffraction analysis, IR-spectrometry and chemical analysis. It is demonstrated that decomposition of MnO(OH) occurs in the wide temperature range (60-550 °C), that results in mixture of Mn2O3 and MnO2 oxides formation.

Keywords: 
manganese (III) oxyhydroxide, synthesis, decomposition.
References: 

1. A.Turner, S.M.Le Roux, G.E.Millward, Marine Chem., 108, 77 (2008). https://doi.org/10.1016/j.marchem.2007.10.004

2. B.J.Lafferty, Dissertation of Doctor of Philosophy in Plant and Soil Sciences, University of Delaware, USA (2010).

3. J.Yang, L.Zou, H.Song et al., Desalination, 276, 199 (2011). https://doi.org/10.1016/j.desal.2011.03.044

4. R.J.Davies-Colley, P.O.Nelson, K.J.Williamson, Environ. Sci. Technol., 18, 491 (1984). https://doi.org/10.1021/es00125a002

5. A.T.Stone, J.J.Morgan, Environ. Sci. Technol., 18, 617 (1984). https://doi.org/10.1021/es00126a010

6. A.M.Odnovolova, D.S.Sofronov, E.Yu.Bryleva et al., Zh. Prikladnoi Khimii, 88, 1440 (2015).

7. V.-M.B.Crisostomo, J.K.Ngala, S.Alia et al., Chem. Mater., 19, 1832 (2007). https://doi.org/10.1021/cm062871z

8. B.Rozanska, E.Lachowicz, Talanta, 33, 1027 (1986). https://doi.org/10.1016/0039-9140(86)80245-4

9. A.K.Lavrukhina, L.V.Yutkina, Analiticheskaya Khimiya Margantsa, Nauka, Moscow (1974) [in Russian].

10. D.S.Sofronov, N.N.Kamneva, A.V.Bulgakova et al., J. Biol. Phys. Chem., 13, 85 (2013). https://doi.org/10.4024/08SO13A.jbpc.13.03

11. T.Kohler, T.Armbruste, E.Libowitzky, J. Solid State Chem., 133, 486 (1997). https://doi.org/10.1006/jssc.1997.7516

12. P.Kar, S.Sardar, S.Ghosh et al., J. Mater. Chem., 3, 8200 (2015).

13. A.C.Greene, J.C.Madgwick, Appl. Environ. Microbiol., 57, 1114 (1991).

14. Y.Khan, S.K.Durrani, M.Mehmood et al., J. Mater. Res., 26, 2268 (2011). https://doi.org/10.1557/jmr.2011.138

15. F.Li, J.Wu, Q.Qin et al., J. Alloys Compd., 492, 339 (2010). https://doi.org/10.1016/j.jallcom.2009.11.089

16. J.T.Sampanthar, J.Dou, G.G.Joo et al., Nanotechnology, 18, 025601 (2007). https://doi.org/10.1088/0957-4484/18/2/025601

Current number: