Funct. Mater. 2017; 24 (3): 365-371.

doi:https://doi.org/10.15407/fm24.03.365

Distribution peculiarities of stray fields and magnetization near magnet singularities

V.N. Samofalov1, D.P.Belozorov2 , A.G. Ravlik1, A.S. Aseev1

1National Technical University "Kharkiv Polytechnic Institute"
2 Kirpichov Str., 61002, Kharkiv, Ukraine2National Scientific Center "Kharkiv Physical and Technical Institute", 1 Akademicheskaya Str. 61108, Kharkiv, Ukraine

Abstract: 

Distributions of both magnetization and stray fields near singularities of a permanent magnet with high uniaxial anisotropy have been studied. On the basis of calculations it is shown that in magnets with high magnetic anisotropy, strong stray fields H > 4πMs occurring near the edge of a magnet do not practically result in deviation of magnetization from easy axis if the quality factor of the magnetic material g = K/(2πMS2) is g > 10. In such magnet systems, the distribution of magnetization is close to homogeneous, and it is possible to use the method of "magnetic charges" for calculations of stray fields. It is shown that the stray field near an edge of a magnet takes finite values, and the presence of a singularity at the dependence of the tangent component of the stray field Hτ ~ Ms-ln(a/r) at r → 0 is related to macroscopic characteristics generally accepted in magnetism, namely the surface density of "magnetic charges" σ.

Keywords: 
permanent magnet, easy axis of magnetization, stray fields, high anisotropy, "magnetic charges", galvanomagnetic sensor, magnetic dipole, bismuth film.
References: 

1. A.Thiaville, D.Tomas, J. Miltat Phys. stat. sol. (a), 170, 125 (1998)

2. W.Rave, K. Ramstock, A.Hubert, J. Magn. Magn. Mater., 183, 329 (1998) https://doi.org/10.1016/S0304-8853(97)01086-X

3. A.P. Malozemoff, J.C. Slonczewski, Academic Press, New York (1979).

4. R.J. Joseph, E. Schlomann, J. Appl. Phys, 36, 1579 (1965). https://doi.org/10.1063/1.1703091

5. K. Halbach, Nucl. Instrum. Meth. Phys. Res., 169, 1 (1980). https://doi.org/10.1016/0029-554X(80)90094-4

6. K. Halbach J. Appl. Phys. 57, 3605 (1985) https://doi.org/10.1063/1.335021

7. V.N. Samofalov, A.G. Ravlik, D.P Belozorov., B.A. Avramenko J. Magn. Magn. Mater., 281, 326 (2004) https://doi.org/10.1016/j.jmmm.2004.04.122

8. V.N. Samofalov, D.P. Belozorov, A.G. Ravlik, Phys. Metals and Metallography, 102, 527 (2006). https://doi.org/10.1134/S0031918X06110068

9. F. Bloch, O. Cugat Eur. Phys. J.-Appl. Phys. 5, 85 (1999) https://doi.org/10.1051/epjap:1999113

10. S.I Tarapov., V.N. Samofalov, A.G. Ravlik, D.P. Belozorov, Int. J. Infrar. Millim. Waves, 24, 1082 (2003) https://doi.org/10.1023/A:1024688111912

11. D. Belozorov, V. Derkach, G. Ermak, M. Nakhimovich, A. Ravlik, V. Samofalov, S. Tarapov, A. Zamkovoy. Int. J. Infrar. Millim. Waves, 27, 107 (2006)

12. V.N. Samofalov, D.P. Belozorov, A.G. Ravlik, Uspekhi Fizicheskikh Nauk 183, 287 - 306 (2013). https://doi.org/10.3367/UFNr.0183.201303e.0287

13. G. Mare, K. Dransfeld, Strong and Ultrastrong Magnetic Fields and Their Applications, ed. by F. Herlach, Springer Verlag, Berlin - Heidelberg -New York - Tokyo (1985).

14. V.N.Samofalov, E.I Ilyashenko., A.Ramstad, L.Z. Lub yanuy, T.H. Johansen J. Optoelectr. Anv. Mat., 6, 911 (2004).

15. Patent US 7,492,550, (2009).

16. E.A. Nesbitt, J.H. Wernick, Rare Earth Permanent Magnets, Academic Press, New York - London (1973).

17. E.C. Stoner, E.P. Wohlfart, Phil. Trans Roy. Soc., 240, 599 (1948). https://doi.org/10.1098/rsta.1948.0007

18. I.E. Tamm, Fundamental Theory of Electricity, Nauka, Moscow (1966) [in Russian].

Current number: