Funct. Mater. 2017; 24 (3): 400-404.

doi:https://doi.org/10.15407/fm24.03.400

Potential producers of biogenic magnetic nanoparticles among disease-producing microorganisms of the brain

S.V.Gorobets, O.Yu.Gorobets, Y.A.Darmenko

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37 Pereniohy Ave., 03156 Kyiv, Ukraine

Abstract: 

In this paper, microorganisms-causative agents of brain disease have the potential to produce biogenic magnetic nanoparticles (BMN), which can accumulate in the human brain in addition to BMN, which are biomineralized in the human brain. The BMN of these microorganisms can attract particular interest for the manufacture of magnetic nanoparticles as functional materials of a wide range of applications such as nanoelectronics, targeted delivery of drugs and a contrast agent for magnetic resonance imaging.

Keywords: 
biogenic magnetic nanoparticles, pathogenic microorganisms, meningitis.
References: 

1. D.Liu, F.Yang, F.Xiong et al., Theranostics, 6, 1306 (2016). https://doi.org/10.7150/thno.14858

2. K.Kim, D.Pack, BioMEMS Biomed Nanotechn, 1, 19 (2015).

3. J.Panyam, V.Labhasetwar, Adv. Drug Delivery Rev., 55, 329 (2003). https://doi.org/10.1016/S0169-409X(02)00228-4

4. N.P.Omorphos, L.Kahn, D.M.Kalaskar, Colloids and Surf. B: Biointerfaces, 136, 440 (2015). https://doi.org/10.1016/j.colsurfb.2015.09.046

5. P.Newman, A.Minett, R.Ellis-Behnke et al., Nanomedicine, 9, 1139 (2013). https://doi.org/10.1016/j.nano.2013.06.001

6. H.M.Hertz, J.C.Larsson, U.Lundstrom et al., Opt. Lett., 39, 2790 (2014). https://doi.org/10.1364/OL.39.002790

7. C.Sun, J.S.H. Lee, M.Zhang, Adv. Drug Delivery Rev., 60, 1252 (2008). https://doi.org/10.1016/j.addr.2008.03.018

8. L.Zhang, F.X.Gu, J.M.Chan et al., Clinical Pharmacology & Therapeutics, 83, 761 (2008). https://doi.org/10.1038/sj.clpt.6100400

9. A.Zaccaria, A.Bouamrani, L.Selek et al., ACS Chem. Neurosci., 4, 385 (2013). https://doi.org/10.1021/cn300116g

10. J.B.Wolinsky, Y.L.Colson, M.W.Grinstaff, J. Control. Release, 159, 14 (2012). https://doi.org/10.1016/j.jconrel.2011.11.031

11. W.Qin, K.Li, G.Feng et al., Adv. Funct. Mater., 24, 635 (2014). https://doi.org/10.1002/adfm.201302114

12. C.-L.Sun, T.Li, J.-Q.Jiang et al., J. Mater. Chem. B, 4, 7226 (2016). https://doi.org/10.1039/C6TB01782G

13. N.Butoescu, Ch.A.Seemayer, G.Palmer et al., Arthritis Research & Theraphy, 11, R72 (2009). https://doi.org/10.1186/ar2701

14. S.Haruta, T.Hanafusa, H.Fukase et al., DiabetesTech. Ther., 5, 1 (2003). https://doi.org/10.1089/152091503763816409

15. M.Higaki, M.Kameyama, M.Udagawa et al., Diabetes Tech. Ther., 8, 369 (2006). https://doi.org/10.1089/dia.2006.8.369

16. W.Yang, D.Trau, R.Renneberg et al., J. Coll. Interface Sci., 234, 356 (2001). https://doi.org/10.1006/jcis.2000.7325

17. T.Patino, J.Soriano, L.Barrios et al., Sci. Rep., 5, 11371 (2015). https://doi.org/10.1038/srep11371

18. J.Wang, H.Cui, Theranostics, 6, 1274 (2016). https://doi.org/10.7150/thno.16479

19. Y.Geng, P.Dalhaimer, S.Cai et al., Nat. Nanotechnol., 2, 249 (2007). https://doi.org/10.1038/nnano.2007.70

20. K.Y.Win, E.Ye, C.P.Teng et al., Adv. Healthcare Mater., 2, 1571 (2013). https://doi.org/10.1002/adhm.201300077

21. M.Behra, N.Azzouz, S.Schmidt et al., Biomacromolecules, 14, 1927 (2013). https://doi.org/10.1021/bm400301v

22. D.Volodkin, Adv. Colloid Interf. Sci., 207, 306 (2014). https://doi.org/10.1016/j.cis.2014.04.001

23. D.B.Trushina, T.V.Bukreeva, M.V.Kovalchuk et al., Mater. Sci. Engin. C, 45, 644 (2014). https://doi.org/10.1016/j.msec.2014.04.050

24. Y.Boyjoo, V.K.Pareek, J.Liu, J. Mat. Chem. A, 2, 14270 (2014). https://doi.org/10.1039/C4TA02070G

25. Y.Ueno, H.Futagawa, Y.Takagi et al., J. Control. Release, 103, 93 (2005). https://doi.org/10.1016/j.jconrel.2004.11.015

26. D.V.Volodkin, N.I.Larionova, G.B.Sukhorukov, Biomacromolecules, 5, 1962 (2004). https://doi.org/10.1021/bm049669e

27. C.Peng, Q.Zhao, C.Gao, Colloid Surface A, 353, 132 (2010). https://doi.org/10.1016/j.colsurfa.2009.11.004

28. C.Wang, C.He, Z.Tong et al., Int. J. Pharm., 308, 160 (2006). https://doi.org/10.1016/j.ijpharm.2005.11.004

29. S.Haruta, T.Hanafusa, H.Fukase et al., DiabetesTech. Ther., 5, 1 (2003). https://doi.org/10.1089/152091503763816409

30. M.Higaki, M.Kameyama, M.Udagawa et al., DiabetesTech. Ther., 8, 369 (2006). https://doi.org/10.1089/dia.2006.8.369

31. J.Wang, J.-S.Chen, J.-Y.Zong et al., J. Phys. Chem. C, 114, 18940 (2010). https://doi.org/10.1021/jp105906p

32. C.Bouzigues, T.Gacoin, A.Alexandrou, Acs Nano, 11, 8488 (2011). https://doi.org/10.1021/nn202378b

33. J.Shen, L.-D.Sun, C.-H.Yan, Dalton. Trans., 14, 5687 (2008). https://doi.org/10.1039/b805306e

34. V.K.Klochkov, A.I.Malyshenko, O.O.Sedyh et al., Functional Materials, 1, 111 (2011).

35. B.C.Chakoumakos, M.M.Abraham, L.A.Boatner, J. Solid State Chem., 109, 197 (1994). https://doi.org/10.1006/jssc.1994.1091

36. J.A.Baglio, G.Gashurov, Acta Cryst. B, 24, 292(1968). https://doi.org/10.1107/S0567740868002189

37. C.Hsu, R.C.Powell, J. Luminescence, 10, 273 (1975). https://doi.org/10.1016/0022-2313(75)90051-4

38. A.Huignard, V.Buissette, A.C.Franville et al., J. Phys. Chem. B, 107, 6754 (2003). https://doi.org/10.1021/jp0342226

39. S.Ouhenia, D.Chateigner, M.A.Belkhir et al., J. Cryst. Growth, 310, 2832 (2008). https://doi.org/10.1016/j.jcrysgro.2008.02.006

40. N.A.N.Hanafy, M.L.De Giorgi, C.Nobile et al., J. Basic Appl. Sci., 4, 60 (2015).

41. F.A.Andersen, L.Brecevic, Acta Chem. Scand., 45, 1018 (1991). https://doi.org/10.3891/acta.chem.scand.45-1018

42. J.Chen, L.Xiang, Powder Technol., 189, 64 (2009). https://doi.org/10.1016/j.powtec.2008.06.004

43. H.Nebel, M.Neumann, C.Mayer, Matthias Epple, Inorg. Chem., 47, 7874 (2008). https://doi.org/10.1021/ic8007409

44. C.Du, J.Shi, L.Zhang et al., Mater. Sci. Eng. C, 33, 3745 (2013). https://doi.org/10.1016/j.msec.2013.05.004

45. A.Bragaru, M.Kusko, A.Radoi, Cent. Eur. J. Chem., 11, 205 (2013).

46. J.Tang, A.P.Alivistatos, Nano Lett., 6, 2701 (2006). https://doi.org/10.1021/nl0615930

47. D.K.Kanchan, H.R.Panchal, Turk. J. Phys., 22, 989 (1998).

48. D.Lin-Vien, N.Colthup, W.Fateley et al., The Handbook of IR and Raman Characteristic Frequencies of Organic Molecules, Academic Press, New York (1991).

49. J.B.Condon, Surface Area and Porosity Determinations by Physisorption: Measurement and Theory, Elsevier, Amsterdam (2006).

50. S.J.Cregg, K.S.W.Sing, Adsorption, Surface Area and Porosity, Academic Press, London, New York (1967).

Current number: