Вы здесь

Funct. Mater. 2017; 24 (3): 481-489.


Preparation and characterization of mortar mixes containing organic acid/expanded vermiculite composite PCM

Xinzhong Zhang1, Weizhun Jin1, Yajun Lv2, Haibin Zhang3, Weibing Zhou4, Fangyi Ding2

1 School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Henan, Zhengzhou, 450045, China
2 School of Architecture, North China University of Water Resources and Electric Power, Henan, Zhengzhou 450045, China
3 Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, 400030, China
4 School of Materials Science and Engineering, Wuhan University of Technology, Hubei, Wuhan, 430070, China


In this paper, capric acid (CA) and palmitic acid (PA) binary PCM/expanded vermiculite (CA-PA/EVM) form stable composite PCM (FS-CPCM) was firstly synthesized by adsorption method. The EVM had the optimal adsorption rate when the mass ratio of CA-PA to EVM was 45:55. The FT-IR results indicated that there was no chemical reaction between binary PCM and EVM. After the thermal cycles for 50 times, the mass loss of the prepared CA-PA/EVM FS-CPCM was 2.8%. However, the latent heat was reduced by 16.10%. Furthermore, thermal energy storage (TES) mortar mixes were prepared by replacing sand aggregates with the fabricated CA-PA/EVM FS-CPCM. The effect of replacing sand aggregates with CA-PA/EVM FS-CPCM on compressive and flexural strength of the mortar mixes was investigated by mechanical experiments. The prepared mortar mixes with CA-PA/EVM FS-CPCMs aggregate exhibited good thermal performance and could be preferentially potential PCM for thermal regulation and energy saving in buildings.

Capric acid, palmitic acid, expanded vermiculite, thermal energy storage, mortar mixes.

1. L. Yang, H.Y. Yan, J.C. Lam, , Appl Energ, 115, 164, 2014. https://doi.org/10.1016/j.apenergy.2013.10.062

2. D. Zhou, C.Y. Zhao, Y. Tian, Appl Energ, 92, 593, 2012. https://doi.org/10.1016/j.apenergy.2011.08.025

3. R. Parameshwaran, S. Kalaiselvam, S. Harikrishnan, A. Elayaperumal, Renew.Sust.Energ.Rev., 16, 2394, 2012. https://doi.org/10.1016/j.rser.2012.01.058

4. U. Stritih and V. Butala, Int J.Refrig., 33, 1676, 2010. https://doi.org/10.1016/j.ijrefrig.2010.07.017

5. G. Zhou, Y. Zhang, X. Wang, K. Lin, W. Xiao, Sol Energ, 81, 1351, 2007. https://doi.org/10.1016/j.solener.2007.01.014

6. S.A. Memon, Renew.Sust.Energ.Rev.,31,870, 2014. https://doi.org/10.1016/j.rser.2013.12.042

7. A. Karaipekli, A. Sarэ, Sol. Energ. Mater. Sol.C., 149, 19, 2016. https://doi.org/10.1016/j.solmat.2015.12.034

8. Y. Hong and G. Xin-shi, Sol. Energ. Mater. Sol.C, 64, 37, 2000. https://doi.org/10.1016/S0927-0248(00)00041-6

9. D.A. Kontogeorgos, G.K. Semitelos, I.D. Mandilaras, M.A. Founti, Fire Safety J, 81, 8, 2016. https://doi.org/10.1016/j.firesaf.2016.01.012

10. B. Mohammadi, F.S. Najafi, H. Ranjbar, J. Mohammadi, M. Zakaryazadeh, Energ Build, 118, . 99, 2016.

11. A. Karaipekli, A. Sarэ, J .Ind. Eng. Chem., 16, 767, 2010. https://doi.org/10.1016/j.jiec.2010.07.003

12. X. Li, H. Wei, X. Lin, X. Xie, Sol. Energ. Mater. Sol.C., 155, 9, 2016. https://doi.org/10.1016/j.solmat.2016.04.057

13. H. Wei, X. Xie, X. Li, X. Lin, Appl Energ, 178, 616, 2016. https://doi.org/10.1016/j.apenergy.2016.06.109

14. X. Xiao, P. Zhang, M. Li, Energ Conv. Manag, 105, 272, 2015. https://doi.org/10.1016/j.enconman.2015.07.074

15. Y.J. Lv, W.B. Zhou, W.Z. Jin, Energ. Build., 111, 242, 2016. https://doi.org/10.1016/j.enbuild.2015.11.042

16. J. Zhang, X. Guan, X. Song, H. Hou, Z. Yang, and J. Zhu, Energ. Build., 92, 155, 2015. https://doi.org/10.1016/j.enbuild.2015.01.063

17. C. Jiao, B. Ji, D. Fang, Mat. Lett., 67, 352., 2012.

18. L. Jiesheng, Y. Yuanyuan, H. Xiang, Energ. Build.,110, 108, 2016. https://doi.org/10.1016/j.enbuild.2015.10.043

19. A. Sarэ, A. Karaipekli, Mater. Chem, Phys., 109, 459, 2008.

20. D. Zhang, S. Tian, D. Xiao, Sol Energ, 81, 653, 2007. https://doi.org/10.1016/j.solener.2006.08.010

21. X. Fang, Z. Zhang, Z. Chen, Energ Conv.Manag., 49, 718, 2008. https://doi.org/10.1016/j.enconman.2007.07.031

22. Y. Wang, H. Zheng, H.X. Feng, D.Y. Zhang, Energ.Build., 47, 467, 2012. https://doi.org/10.1016/j.enbuild.2011.12.021

23. Y. El Mouzdahir, A. Elmchaouri, R. Mahboub, A. Gil, S.A. Korili, Powd. Techn., 189, 2, 2009. https://doi.org/10.1016/j.powtec.2008.06.013

Current number: