Вы здесь

Funct. Mater. 2017; 24 (4): 516-520.

doi:https://doi.org/10.15407/fm24.04.516

Energy transport in EuAl2.07(B4O10)O0.6 nanocrystals with two-dimensional Eu3+ sublattice

N.V.Kononets1, V.V.Seminko1,2, P.O.Maksimchuk1,2, I.I.Bespalova1,2, Yu.V.Malyukin1,2, B.V.Grynyov1,2

1Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine

Abstract: 

Energy transport processes in EuAl2.07(B4O10)O0.6 nanocrystals with two-dimensional arrangement of Eu3+ subsystem were investigated using the methods of stationary and time-resolved spectroscopy. Sufficient difference in Eu3+-Eu3+ distances inside and between (001) planes (4.58 ??? vis 9.28 ???, respectively) leads to two-dimensional character of energy migration. Comparison of energy transport processes in aluminium borate nanocrystals with two-dimensional (EuAl2.07(B4O10)O0.6) and three-dimensional (EuAl3(BO3)4) arrangement of Eu3+ ions have shown that despite higher Eu3+-Eu3+ shortest distances (5.9 ???), energy migration in EuAl3(BO3)4 leads to stronger quenching of Eu3+ luminescence.

Keywords: 
Nanocrystals, energy transport processes.
References: 

1. R.L.Byer, M.M.Choy, R.L.Herbst et al., Appl. Phys. Lett., 24, 65 (1974). https://doi.org/10.1063/1.1655096

2. M.T.Whittaker, T.E.Stenger, D.G.Krause, D.H.Matthiesen, J. Cryst. Growth, 310, 1904 (2008). https://doi.org/10.1016/j.jcrysgro.2007.11.213

3. J.D.Olekseyuk, A.Y.Gulyak, L.Y.Sysa et al., J. Alloys Compd., 241, 187 (1996). https://doi.org/10.1016/0925-8388(96)02295-5

4. O.V.Parasyuk, A.O.Fedorchuk, G.P.Gorgut et al., Opt. Mater., 35, 65 (2012). https://doi.org/10.1016/j.optmat.2012.07.002

5. M.V.Shevchuk, V.V.Atuchin, A.V.Kityk et al., J. Cryst. Growth., 318, 708 (2011). https://doi.org/10.1016/j.jcrysgro.2010.10.038

6. G.Lakshminarayana, M.Piasecki, G.E.Davydyuk et al., Mater. Chem. Phys., 135, 837 (2012). https://doi.org/10.1016/j.matchemphys.2012.05.067

7. V.Badikov, K.Mitin, F.Noack et al., Opt. Mater., 31, 590 (2009). https://doi.org/10.1016/j.optmat.2008.06.015

8. V.Petrov, F.Noack, V.Badikov et al., Appl. Opt. 43, 4590 (2004). https://doi.org/10.1364/AO.43.004590

9. G.L.Myronchuk, O.V.Zamurueva, O.V.Parasyuk et al., J. Mater. Sci. Mater. Electron., 25, 3226 (2014). https://doi.org/10.1007/s10854-014-2007-y

10. D.J.Knuteson, N.B.Singh, G.Kanner et al., J. Cryst. Growth, 312, 1114 (2010). https://doi.org/10.1016/j.jcrysgro.2009.10.051

11. V.Yo.Stadnyk, R.S.Brezvin, M.Ya.Rudysh et al., Opt. Spectrosc., 117, 756 (2014). https://doi.org/10.1134/S0030400X14110216

12. V.Panyutin, V.Badikov, G.Shevyrdyaeva et al., Proc. of SPIE, 6875, 68750A (2008). https://doi.org/10.1117/12.761018

13. D.Adamenko, O.Parasyuk, R.Vlokh, Ukr. J. Phys. Opt., 17, 27 (2016). https://doi.org/10.3116/16091833/17/1/27/2016

14. I.Martynyuk-Lototska, M.Kushnirevych, G.L.Myronchuk et al., Ukr. J. Phys. Opt., 16, 77 (2015). https://doi.org/10.3116/16091833/16/2/77/2015

15. G.E.Davidyuk, O.N.Yurchenko, O.V.Parasyuk et al., Inorg. Mater., 44, 361 (2008). https://doi.org/10.1134/S0020168508040067

16. K.V.Shalimova, Physics of Semiconductors, Mir, Moscow (2010). [in Russian]

17. M.S.Yunusov, M.Karimov, B.L.Oksengendler, Semiconductors, 32, 238 (1998). https://doi.org/10.1134/1.1187387

18. R.Enderlein, Fundamentals of Semiconductor Physics and Devices, Hardcover (1997). https://doi.org/10.1142/2866

1. T.S.Rao, A.K.Chaudhuri, Bull. Mater. Sci., 19, 449 (1996). https://doi.org/10.1007/BF02744816

2. I.V.Kityk, G.L.Myronchuk, O.V.Parasyuk et al., Opt. Mat., 63, 197 (2017). https://doi.org/10.1016/j.optmat.2016.05.029

2. A.V.Novosad, V.V.Bozhko, H.E.Davydyuk et al., Semiconductors, 48, 286 (2014). https://doi.org/10.1134/S1063782614030191

.

Current number: