Вы здесь

Funct. Mater. 2017; 24 (4): 516-520.

doi:https://doi.org/10.15407/fm24.04.516

Energy transport in EuAl2.07(B4O10)O0.6 nanocrystals with two-dimensional Eu3+ sublattice

N.V.Kononets1, V.V.Seminko1,2, P.O.Maksimchuk1,2, I.I.Bespalova1,2, Yu.V.Malyukin1,2, B.V.Grynyov1,2

1Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine

Abstract: 

Energy transport processes in EuAl2.07(B4O10)O0.6 nanocrystals with two-dimensional arrangement of Eu3+ subsystem were investigated using the methods of stationary and time-resolved spectroscopy. Sufficient difference in Eu3+-Eu3+ distances inside and between (001) planes (4.58 ??? vis 9.28 ???, respectively) leads to two-dimensional character of energy migration. Comparison of energy transport processes in aluminium borate nanocrystals with two-dimensional (EuAl2.07(B4O10)O0.6) and three-dimensional (EuAl3(BO3)4) arrangement of Eu3+ ions have shown that despite higher Eu3+-Eu3+ shortest distances (5.9 ???), energy migration in EuAl3(BO3)4 leads to stronger quenching of Eu3+ luminescence.

Keywords: 
Nanocrystals, energy transport processes.
References: 

1. M.Buijs, A.Meyerink, G.Blasse, J.Luminescence, 37, 9 (1987). https://doi.org/10.1016/0022-2313(87)90177-3

2. K.S.Sohn, Y.Y.Choi, H.D.Park et al., J.Electrochem.Soc., 147, 2375 (2000). https://doi.org/10.1149/1.1393539

3. A.J.De Vries, H.S.Kiliaan, G.Blasse, J.Solid State Chem., 65, 190 (1986). https://doi.org/10.1016/0022-4596(86)90053-8

4. T.S.Ahn, N.Wright, C.J.Bardeen, Chem.Phys.Lett., 446, 43 (2007). https://doi.org/10.1016/j.cplett.2007.08.003

5. N.Tombros, C.Jozsa, M.Popinciuc et al., Nature, 448, 571 (2007). https://doi.org/10.1038/nature06037

6. Z.Liu, D.Zhang, S.Han et al., J.Adv.Mater., 15, 1754 (2003). https://doi.org/10.1002/adma.200305439

7. B.Corry, Energy Environ. Sci., 4, 751 (2011). https://doi.org/10.1039/c0ee00481b

8. N.V.Kononets, V.V.Seminko, P.O.Maksimchuk et al., Spectrosc. Lett., 50, 399 (2017). https://doi.org/10.1080/00387010.2017.1345946

9. F.Kellendonk, G.Blasse, J.Chem.Phys. 75, 561 (1981). https://doi.org/10.1063/1.442061

10. F.Capitelli, G.Chita, N.I.Leonyuk et al., Z.Kristallogr., 224, 478 (2009). https://doi.org/10.1524/zkri.2009.1175

11. N.V.Kononets, O.G.Viagin, V.V.Seminko et al., Spectrosc. Lett., 50, 359 (2017). https://doi.org/10.1080/00387010.2017.1321021

12. K.K.Ghosh, D.L.Huber, J.Luminescence, 21, 225 (1980). https://doi.org/10.1016/0022-2313(80)90001-0

13. P.Grassberger, I.Procaccia, J.Chem.Phys., 77, 6281 (1982). https://doi.org/10.1063/1.443832

14. M.Buijs, G.Blasse, J.Solid State Chem., 71, 296 (1987). https://doi.org/10.1016/0022-4596(87)90237-4

15. M.Yokota, O.Tanimoto, J.Phys.Soc.Jpn., 22, 779 (1967). https://doi.org/10.1143/JPSJ.22.779

Current number: