Funct. Mater. 2017; 24 (4): 521-526.

doi:https://doi.org/10.15407/fm24.04.521

Influence the cationic substitution in AgGaGe3Se8 on the electro-optical, IR optical and nonlinear properties

A.S.Krymus1, G.L.Myronchuk1, O.V.Parasyuk2, I.V.Kityk3, M.Piasecki4

1Department of Solid State Physics, Lesya Ukrainka Eastern European National University, 13 Voli Ave., 43025 Lutsk, Ukraine
2Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, 13 Voli Ave., 43025 Lutsk, Ukraine
3Faculty of Electrical Engineering, Czestochowa Univerisity technology, 17 Armii Krajowej Czestochowa, Poland
4 Institute of Physics, J.Dlugosh Academy, Armii Krajowej 13/15, PL-42-201, Czestochowa, Poland

Abstract: 

In present article we present results of detailed study of the possibility adapting AgGaGe3Se8 single crystal properties to desired requirements by investigate the influence of the different cationic substitution on the physical properties: optical, nonlinear optical (NLO) - Second Harmonic Generation (SHG) and temperature dependent photoconductivity. We report results obtained for modified crystals based on AgGaGe3Se8 by cationic substitution of the elements belong to first - (Ag-Cu), third (Ga-In), and fourth (Ge-Sn) groups of the periodic system. For the convincing observation the effects of various impurities and compare results with obtained for virgin AgGaGe3Se8 crystal was conducted replacing at 5 mol. % one element by another.

Keywords: 
SHG, NLO, impurities.
References: 

1. R.L.Byer, M.M.Choy, R.L.Herbst et al., Appl. Phys. Lett., 24, 65 (1974). https://doi.org/10.1063/1.1655096

2. M.T.Whittaker, T.E.Stenger, D.G.Krause, D.H.Matthiesen, J. Cryst. Growth, 310, 1904 (2008). https://doi.org/10.1016/j.jcrysgro.2007.11.213

3. J.D.Olekseyuk, A.Y.Gulyak, L.Y.Sysa et al., J. Alloys Compd., 241, 187 (1996). https://doi.org/10.1016/0925-8388(96)02295-5

4. O.V.Parasyuk, A.O.Fedorchuk, G.P.Gorgut et al., Opt. Mater., 35, 65 (2012). https://doi.org/10.1016/j.optmat.2012.07.002

5. M.V.Shevchuk, V.V.Atuchin, A.V.Kityk et al., J. Cryst. Growth., 318, 708 (2011). https://doi.org/10.1016/j.jcrysgro.2010.10.038

6. G.Lakshminarayana, M.Piasecki, G.E.Davydyuk et al., Mater. Chem. Phys., 135, 837 (2012). https://doi.org/10.1016/j.matchemphys.2012.05.067

7. V.Badikov, K.Mitin, F.Noack et al., Opt. Mater., 31, 590 (2009). https://doi.org/10.1016/j.optmat.2008.06.015

8. V.Petrov, F.Noack, V.Badikov et al., Appl. Opt. 43, 4590 (2004). https://doi.org/10.1364/AO.43.004590

9. G.L.Myronchuk, O.V.Zamurueva, O.V.Parasyuk et al., J. Mater. Sci. Mater. Electron., 25, 3226 (2014). https://doi.org/10.1007/s10854-014-2007-y

10. D.J.Knuteson, N.B.Singh, G.Kanner et al., J. Cryst. Growth, 312, 1114 (2010). https://doi.org/10.1016/j.jcrysgro.2009.10.051

11. V.Yo.Stadnyk, R.S.Brezvin, M.Ya.Rudysh et al., Opt. Spectrosc., 117, 756 (2014). https://doi.org/10.1134/S0030400X14110216

12. V.Panyutin, V.Badikov, G.Shevyrdyaeva et al., Proc. of SPIE, 6875, 68750A (2008). https://doi.org/10.1117/12.761018

13. D.Adamenko, O.Parasyuk, R.Vlokh, Ukr. J. Phys. Opt., 17, 27 (2016). https://doi.org/10.3116/16091833/17/1/27/2016

14. I.Martynyuk-Lototska, M.Kushnirevych, G.L.Myronchuk et al., Ukr. J. Phys. Opt., 16, 77 (2H015).

15. G.E.Davidyuk, O.N.Yurchenko, O.V.Parasyuk et al., Inorg. Mater., 44, 361 (2008). https://doi.org/10.1134/S0020168508040067

16. K.V.Shalimova, Physics of Semiconductors, Mir, Moscow (2010). [in Russian]

17. M.S.Yunusov, M.Karimov, B.L.Oksengendler, Semiconductors, 32, 238 (1998). https://doi.org/10.1134/1.1187387

18. R.Enderlein, Fundamentals of Semiconductor Physics and Devices, Hardcover (1997). https://doi.org/10.1142/2866

19. T.S.Rao, A.K.Chaudhuri, Bull. Mater. Sci., 19, 449 (1996). https://doi.org/10.1007/BF02744816

20. I.V.Kityk, G.L.Myronchuk, O.V.Parasyuk et al., Opt. Mat., 63, 197 (2017). https://doi.org/10.1016/j.optmat.2016.05.029

21. A.V.Novosad, V.V.Bozhko, H.E.Davydyuk et al., Semiconductors, 48, 286 (2014). https://doi.org/10.1134/S1063782614030191

.

Current number: