Funct. Mater. 2017; 24 (4): 534-540.

doi:https://doi.org/10.15407/fm24.04.534

Synthesis and functional properties of mixed titanium and cobalt oxides

M.V.Ved', N.D.Sakhnenko, A.V.Karakurkchi, M.V.Mayba, A.V.Galak

National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova St., 61002 Kharkiv, Ukraine

Abstract: 

Peculiarities of plasma-electrolytic oxidation of the aluminum alloys in diphosphate electrolytes are discussed. It is shown that PEO parameters depend on the composition and concentration of the components of the working solutions. The mechanism of cobalt oxides incorporation into the composition of surface layers is proposed. It has been established that the oxidation of titanium in citrate-diphosphate electrolytes promotes the formation of mixed oxide layers TiOx·CoOy. The obtained mixed oxide systems have a developed microporous globular-toroidal surface and are characterized by a complex of enhanced functional properties - corrosion and abrasion resistance, catalytic activity in the carbon (II) oxide conversion reaction.

Keywords: 
titanium alloy, plasma electrolytic oxidation, titania, cobalt oxides, mixed oxides, corrosion resistance, catalytic activity, abrasion resistance.
References: 

1. S.Bagheri, N.Muhd Julkapli, S.Bee Abd Hamid, The Sci. World J., 58, 635 (2014).

2. C.Veiga, J.P.Davim, A.J.R.Loureiro, Rev. Adv. Mater., 32, 2 (2012).

3. M.Anpo, P.V.Kamat, Environmentally Benign Photocatalysts: Applications of Titanium Oxide-based Materials, Springer Science, New York (2010). https://doi.org/10.1007/978-0-387-48444-0

4. Z.R.Ismagilov, L.T.Tsikoza, N.V.Shikina et al., Rus. Chem. Rev., 78, 9 (2009). https://doi.org/10.1070/RC2009v078n09ABEH004082

5. C.Oldani, A.Dominguez, Recent Advances in Arthroplasty, InTech (2012).

6. C.N.Elias, J.H.C.Lima, R.Valiev, M.A.Meyers, JOM, 60, 3 (2008). https://doi.org/10.1007/s11837-008-0031-1

7. M.J.Jackson, W.Ahmed, Surface Engineered Surgical Tools and Medical Devices, Springer, New York (2007). https://doi.org/10.1007/978-0-387-27028-9

8. M.T.Mohammed, Z.A.Khan. A.N.Siddiquee, Proc. Mater. Sci., 6, 1610 (2014). https://doi.org/10.1016/j.mspro.2014.07.144

9. A.Kazek-Kesika, M.Krok-Borkowicz, G.Dercz et al., Electrochim. Acta, 204, 294 (2016). https://doi.org/10.1016/j.electacta.2016.02.193

10. N.Masuko, T.Osaka, Y.Ito, Electrochemical Technology: Innovation and New Technologies, Kodansha, Gordon and Breach (1996).

11. I.V.Lukiyanchuk, V.S.Rudnev, L.M.Tyrina, Surf. Coat. Technol., 307, 1183 (2016). https://doi.org/10.1016/j.surfcoat.2016.06.076

12. G.Yar-Mukhamedova, M.Ved, N.Sakhnenko et al., Appl. Surf. Sci., 383, 346 (2016). https://doi.org/10.1016/j.apsusc.2016.04.046

13. N.D.Sakhnenko, M.V.Ved', D.S.Androshchuk, S.A.Korniy, Surf. Eng. Appl. Elect., 52, 145 (2016). https://doi.org/10.3103/S1068375516020113

14. M.S.Vasilyeva, V.S.Rudnev, A.Yu.Ustinov et al., Appl. Surf. Sci., 257, 1239 (2010). https://doi.org/10.1016/j.apsusc.2010.08.031

15. N.Sakhnenko, O.Ovcharenko, M.Ved, Functional Materials, 22, 105 (2015.)

16. P.Gupta, G.Tenhundfeld, E.O.Daigle, D.Ryabkov, Surf. Coat. Technol., 201, 8746 (2007). https://doi.org/10.1016/j.surfcoat.2006.11.023

17. V.V.Bykanova, N.D.Sakhnenko, M.V.Ved', Surf. Eng. Appl. Elect., 51, 276 (2015). https://doi.org/10.3103/S1068375515030047

18. N.D.Sakhnenko, M.V.Ved', A.V.Karakurkchi, A.V.Galak, East.-Europ. J.Enterp. Technol., 3, 37 (2016). https://doi.org/10.15587/1729-4061.2016.69390

19. Z.ur Rahman, I.Shabib, W.Haider, Mater. Sci. Engin., 67, 675 (2016). https://doi.org/10.1016/j.msec.2016.05.070

20. E.Krasicka-Cydzik, Corros Sci., 46, 2487 (2004). https://doi.org/10.1016/j.corsci.2004.01.012

21. B.Yang, M.Uchida, H.-M.Kim et al., Biomater., 25, 1003 (2004). https://doi.org/10.1016/S0142-9612(03)00626-4

22. M.Glushkova, T.Bairachna, M.Ved, M.Sakhnenko, MRS Proceed., 1491 (2013).

23. I.V.Lukiyanchuk, I.V.Chernykh, V.S.Rudnev et al., Prot. Met. Phys. Chem. Surf., 50, 209 (2014). https://doi.org/10.1134/S2070205114020105

24. M.V.Ved', N.D.Sakhnenko, O.V.Bogoyavlenska, T.O.Nenastina, Mater. Sci., 44, 79 (2008). https://doi.org/10.1007/s11003-008-9046-6

25. A.Kassman, S.Jacobson, L.Ericson et al., Surf. Coat. Techn., 50, 75 (1991). https://doi.org/10.1016/0257-8972(91)90196-4

26. P.V.Snytnikov, V.D.Belyaev, V.A. Sobyanin, Kinet. Catal., 48, 93 (2007). https://doi.org/10.1134/S0023158407010132

27. M.V.Ved', A.V.Karakurkchi, N.D.Sakhnenko, A.S.Gorohivskiy, Chem. Phys. Technol. Surf., 8, 73 (2017).

28. N.D.Sakhnenko, M.V.Ved, Yu.V.Vestfrid, I.I.Stepanova, Zh. Prikladnoi Khimii, 69, 1346 (1996).

29. P.V.Snytnikov, V.D.Belyaev, V.A.Sobyanin, Kinet. Catal., 48, 93 (2007). https://doi.org/10.1134/S0023158407010132

.

Current number: