Funct. Mater. 2017; 24 (4): 555-558.

doi:https://doi.org/10.15407/fm24.04.555

Dependence of electrical conductivity on Bi2Se3 thin film thickness

S.I.Menshikova1, E.I.Rogacheva1, A.Yu.Sipatov1, A.G.Fedorov2

1National Technical University "Kharkiv Polytechnic Institute", 2 Kirpicheva Str., 61002 Kharkiv, Ukraine
2Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

Effect of film thickness d on electrical conductivity σ of n-Bi2Se3 thin films (d = 25-420 nm) prepared by thermal evaporation in vacuum onto glass substrates was investigated. It was established that the electrical conductivity increases with increasing of the thin films thickness. The observed effect is explained as a manifestation of the classical size effect connected with diffuse scattering of electrons at the thin film interfaces. The experimental σ(d) dependence is satisfactorily described using the Fuchs-Sondheimer theory for the film thickness d > 60 nm. The specularity parameter and value of electrons mean free path are determined based of the experimental data.

Keywords: 
bismuth selenide, thin film, thickness, electrical conductivity, classical size effect.
References: 

1. L.I.Anatychuk, Thermoelements and Thermoelectric Arrangements, Naukova Dumka, Kiev (1979) [in Russian].

2. D.M.Rowe, CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, London, New York, Washington (1995).

3. N.S.Patil, A.M.Sargar, S.R.Mane et al., Appl. Surf. Sci., 254, 5261 (2008). https://doi.org/10.1016/j.apsusc.2008.02.084

4. L.D.Hicks, M.S.Dresselhaus, Phys. Rev. B Condens. Matter., 47(19), 12727 (1993). 5. M.S.Dresselhaus, Y.-M.Lin et al, Semiconductors and Semimetals: Recent Trends in Thermoelectric Materials Research, San Diego, CA: Academic Press (2001).

6. R.Venkatasubramanian, E.Siivola, T.Colpitts et al., Nature, 413, 597 (2001). https://doi.org/10.1038/35098012

7. Y.Xia, D.Qian, D.Hsieh, L.Wray et al., Nature Physics, 5, 398 (2009). https://doi.org/10.1038/nphys1274

8. D.Hsieh, Y.Xia, D.Qian, L.Wray et al., Nature, 460, 1101 (2009). https://doi.org/10.1038/nature08234

9. Yu.F.Komnik, Physics of Metal Films, Atomizdat, Moscow (1979) [in Russian].

10. E.I.Rogacheva, A.V.Budnik, A.Yu.Sipatov et al., Appl. Phys. Lett., 106, 053103 (2015). https://doi.org/10.1063/1.4907319

11. E.I.Rogacheva, A.V.Budnik, A.Yu.Sipatov et al., Thin Solid Films, 594, 109 (2015). https://doi.org/10.1016/j.tsf.2015.10.023

12. N.Bansal, Y.S.Kim, M.Brahlek et al., PRL, 109, 116804 (2012). https://doi.org/10.1103/PhysRevLett.109.116804

13. G.Zhang, H.Qin, J.Teng et al., APL, 95, 053114 (2009).

14. R.N.Bhattacharya, P.Pramanic, J. Electrochem. Soc., 129, 332 (1982). https://doi.org/10.1149/1.2123828

15. Z.Sun, S.Liufu, R.Liu et al., J. Mater. Chem., 21, 2351 (2011). https://doi.org/10.1039/C0JM03561K

16. S.S.Fouad, A.Y.Morsy, H.M.Talaat et al., Phys. Stat. Sol. (b), 183, 149 (1994). h https://doi.org/10.1002/pssb.2221830111

17. D.Nataraj, K.Senthil, Sa.K.Narayandass et al., Cryst. Res. Technol., 34, 867 (1999). https://doi.org/10.1002/(SICI)1521-4079(199908)34:7<867::AID-CRAT867>3.0.CO;2-8

18. V.T.Patil, Y.R.Toda, D.N.Gujarathi, International Journal of Scientific & Engineering Research, 5, 1220 (2014).

19. T.E.Manjulavalli, T.Balasubramanian, D.Nataraj, Chalcogenide Letters, 5, 297 (2008).

20. A.Goswami, S.S.Koli. Indian J. Pure Appl. Phys., 7(3), 166 (1969).

21. B.M.Goltsman, V.A.Kudinov, I.A.Smirnov, Nauka, Moscow (1972) [in Russian].

22. K.Fuchs, Proc. Cambridge Philos. Soc., 34, 100 (1938). https://doi.org/10.1017/S0305004100019952

23. Z.V.Stasyuk, A.I.Lopatinsky, Physics and Chemistry of Solid State, 2, 521 (2001)

.

Current number: