Funct. Mater. 2017; 24 (4): 599-606.

doi:https://doi.org/10.15407/fm24.04.599

Phosphorylated thiacalixarenes as molecular receptors for QCM sensors of volatile compounds

Z.I.Kazantseva1, I.A.Koshets1, A.E.Belyaev1, A.B.Ryabitskii2, S.G.Kharchenko2, A.B.Drapailo2, V.I.Kalchenko2, S.V.Shishkina3, O.V.Shishkin3

1Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41 Nauki Ave., 03028 Kyiv, Ukraine
2Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska Str., 02660 Kyiv, Ukraine
3State Scientific Institution "Institute of Single Crystals", National Academy of Sciences of Ukraine, 60 Nauki Ave., 61001 Kharkiv, Ukraine

Abstract: 

Sorption of volatile organic compounds and ammonia by thin solid films of phosphorylated thiacalixarenes was investigated by the quartz crystal microbalance (QCM), X-ray crystallography and molecular modeling methods The interfacial sorption depends on the number and position (upper or lower rim) of P=O groups on the macrocyclic skeleton, the electronic nature of the substituents at the phosphorus atom. At low concentrations of the analytes their sorption occurs according to the Langmuir isotherm due to specific supramolecular interactions with receptor centers of the thiacalixarenes. The analytes may form either the Host-Guest inclusion complexes stabilized by C-H...π interactions, or extracavity complexes stabilized by hydrogen bonds with oxygen atoms of the peripheral P=O groups. At high concentrations, when the thiacalixarene receptor centers are occupied by the analytes, further sorption occurs nonspecifically according to the linear Henry isotherm due to inclusion of the analytes in voids of the crystal structure of the thiacalixarenes.

Keywords: 
phosphorylated thiacalixarenes, QCM sensor, X-ray crystallography analysis, molecular modeling, volatile organic compounds.
References: 

1. G.Orellana, M.C.Moreno-Bondi, Frontiers in Chemical Sensors: Novel Principles and Techniques, Springer, New York (2005). https://doi.org/10.1007/3-540-27757-9

2. B.Wang, E.V.Anslyn, Chemosensors: Principles, Strategies, and Applications, John Wiley & Sons, Inc., Hoboken, New Jersey (2011). https://doi.org/10.1002/9781118019580

3. W.Goepel, Sen. Actuators B-Chem., 18, 1 (1994). https://doi.org/10.1016/0925-4005(94)87049-7

4. K.Haupt, K.Mosbach, Chem. Rev., 100, 2495 (2000). https://doi.org/10.1021/cr990099w

5. G.W.Gokel, W.M.Leevy, M.E.Weber, Chem. Rev., 104, 2723 (2004). https://doi.org/10.1021/cr020080k

6. E.V.Anslyn, J. Org. Chem., 72, 687 (2007). https://doi.org/10.1021/jo0617971

7. J.-P.Desvergne, A.W.Czarnik, Chemosensors of Ion and Molecule Recognition, ed. by J.-P.Desvergne, A.W.Czarnik, NATO ASI Series, Kluwer Academic, Dordrecht, The Netherlands (1997).

8. P.Nelli, E.Dalcanale, G.Faglia et al., Sen. Actuators B, 13, 302 (1993). https://doi.org/10.1016/0925-4005(93)85386-O

9. F.Bianchi, A.Bedini, N.Riboni et al., Analyt. Chem., 86, 10646 (2014). https://doi.org/10.1021/ac5025045

10. E.Biavardi, S.Federici, C.Tudisco et al., Angew. Chem. Int., 53, 9183 (2014). https://doi.org/10.1002/anie.201404774

11. F.L.Dickert, O.Schuster, Mikrochim. Acta, 119, 55 (1995). https://doi.org/10.1007/BF01244854

12. D.Diamond, K.Nolan, Analyt. Chem., 73, 232001.

13. Y.Shirshov, B.Snopok, O.Rengevich et al., Relaxation of Nanostructured Molecular Materials under the Influence of Solvent Vapor, in book: Frontiers of Multifunctional Nanosystems, ed. by E.Buzaneva, P.Scarf, Kluwer Academic Publishers, The Netherlands (2002).

14. R.Zadmard, T.Schrader, J. Am. Chem. Soc., 127, 904 (2005). https://doi.org/10.1021/ja045785d

15. I.A.Koshets, Z.I.Kazantseva, A.E.Belyaev, V.I.Kalchenko, Sen. Actuators B, 140, 104 (2009). https://doi.org/10.1016/j.snb.2009.04.014

16. J.Vicens, J.Harrowfield, Calixarenes in the Nanoworld, ed. by J.Vicens, J.Harrowfield, Springer, Dordrecht, The Netherlands (2007). https://doi.org/10.1007/978-1-4020-5022-4

17. R.Pinalli, E.Dalcanale, Acc. Chem. Res., 46, 399 (2013). https://doi.org/10.1021/ar300178m

18. C.Tudisco, F.Bertani, M.T.Cambria et al., Nanoscale, 5, 11438 (2013). https://doi.org/10.1039/c3nr02188b

19. M.Melegari, C.Massera, R.Pinalli, R.M. et al., Sen. Actuators B, 179, 74 (2013). https://doi.org/10.1016/j.snb.2012.10.020

20. J.-P.Dutasta, Top. Curr. Chem., 232, 55 (2004). https://doi.org/10.1007/b13779

21. P.Delangle, J.C.Mulatier, B.Tinant et al., Eur. J. Org. Chem., 19, 3695 (2001). https://doi.org/10.1002/1099-0690(200110)2001:19<3695::AID-EJOC3695>3.0.CO;2-9

22. A.V.Solovyov, S.O.Cherenok, O.I.Kalchenko et al., J. Mol. Liquids, 159, 117 (2011). https://doi.org/10.1016/j.molliq.2010.12.007

23. G.Sauerbrey, Z. Phys., 155, 206 (1959). https://doi.org/10.1007/BF01337937

24. N.Morohashi, F.Narumi, N.Iki et al., Chem. Rev., 106, 5291 (2006). https://doi.org/10.1021/cr050565j

25. M.W.Hosseini, Thiacalixarenes a New Class of Receptor Molecules: Synthesis and Structural Analysis, in book: Calixarene Molecules for Separation, ed. by G.J.Lumetta, R.D.Rogers, A.S.Gopalan, ACS Series, 296 (2000).

26. T.H.Kim, H.Kim, J.H.Lee, J.S.Kim, Bull. Korean Chem. Soc., 29, 620 (2008). https://doi.org/10.5012/bkcs.2008.29.3.620

27. V.K.Gupta, B.Sethi, R.A.Sharma et al., J. Mol. Liquids, 177, 114 (2013). https://doi.org/10.1016/j.molliq.2012.10.008

28. Y.Kumagai, M.Hasegawa, S.Miyanari et al., Tetrahedron Lett., 38, 3971 (1997). https://doi.org/10.1016/S0040-4039(97)00792-2

29. S.Kharchenko, A.Drapailo, S.Shishkina et al., Supramolecular Chem., 26, 864 (2014). https://doi.org/10.1080/10610278.2014.890198

30. O.Kasyan, D.Swierczynski, A.Drapailo et al., Tetrahedron Lett. 44, 7167 (2003). https://doi.org/10.1016/S0040-4039(03)01809-4

31. V.I.Kalchenko, I.A.Koshets, E.P.Matsas et al., Mater. Sci., 20, 73 (2002).

32. J.M.McKelvey, H.E.Hoelscher, Analyt. Chem., 29, 123 (1957). https://doi.org/10.1021/ac60121a036

33. A.D.Becke, J. Chem. Phys., 98, 5648 (1993). https://doi.org/10.1063/1.464913

34. P.J.Stephens, F.J.Devlin, C.F.Chabalowski, M.J.Frisch, J. Phys. Chem., 98, 11623 (1994). https://doi.org/10.1021/j100096a001

35. K.Kim, K.D.Jordan, J. Phys. Chem., 98, 10089 (1994). https://doi.org/10.1021/j100091a024

36. Gaussian 09, Revision B.01, M.J.Frisch, G.W.Trucks, H.B.Schlegel et al., Gaussian Inc., Wallingford CT (2010).

.

Current number: