Funct. Mater. 2017; 24 (4): 660-666.

doi:https://doi.org/10.15407/fm24.04.660

Poly(lactic acid) scaffolds modified by gelatin for the controlled release of tetrandrine in vitro

Zhang Ye1,2

1 Department of Pharmaceutical Sciences, Zibo Vocational Institute, Zibo, Shandong 255314, China
2 Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China

Abstract: 

To mimic natural extracellular matrix architecture, tetrandrine-loaded poly(L-lactic acid) scaffolds modified by gelatin were prepared via phase separation, solvent replacement and freeze-drying. The purpose of this work was to combine the biological effects of tetrandrine and the advantages of poly(L-lactic acid) scaffolds which was modified by gelatin to enhancing the mass transfer features of controlled release systems. Tetrandrine contained in the scaffolds was confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FT-IR) spectroscopy. Tetrandrine did not change the morphous, crystallinity and thermodynamics of the scaffolds which demonstrated by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and X-ray powder diffractometry (XRD). The results of this study showed a sustained release with 79.15% for 188 days in vitro.

Keywords: 
poly(lactic acid) scaffolds, gelatin, tetrandrine, tissue engineering.
References: 

1. B. Aslan, S. Guler, A. Tevlek and H. M. Aydin, J Biomed Mater Res B Appl Biomater, 2017. [Epub ahead of print] doi: 10.1002/jbm.b.34022. https://doi.org/10.1002/jbm.b.34022

2. G. Conoscenti, T. Schneider, K. Stoelzel, F. Carfi Pavia, V. Brucato, C. Goegele, V. La Carrubba and G. Schulze-Tanzil, Mater Sci Eng C Mater Biol Appl, 80, 449, 2017. https://doi.org/10.1016/j.msec.2017.06.011

3. Y.-L. Cui, X.-M. Gao, J.-S. Tian and K.-D. Yao, In: 2nd International Conference on Bioinformatics and Biomedical Engineering, iCBBE, pp.1480-1483. 2008.

4. Y. L. Cui, X. Hou, A. D. Qi, X. H. Wang, H. Wang, K. Y. Cai, Y. Ji Yin and K. De Yao, J Biomed Mater Res A, 66, 770, 2003. https://doi.org/10.1002/jbm.a.10071

5. Y. L. Cui, Y. B. Zhang, X. M. Gao and K. D. Yao, Cell Research, 16, S48, 2006.

6. N. Eslahi, M. R. Hadjighassem, M. T. Joghataei, T. Mirzapour, M. Bakhtiyari, M. Shakeri, V. Pirhajati, P. Shirinbayan and M. Koruji, Int J Nanomedicine, 8, 4563, 2013.

7. S. Gao, Y. L. Cui, C. Q. Yu, Q. S. Wang and Y. Zhang, Behav Brain Res, 238, 79, 2013. https://doi.org/10.1016/j.bbr.2012.10.015

8. Y. H. Gong, Q. L. Zhou, C. Y. Gao and J. C. Shen, Acta Biomaterialia, 3, 531, 2007. https://doi.org/10.1016/j.actbio.2006.12.008

9. Y. C. Hsu, Y. T. Chiu, C. C. Cheng, C. F. Wu, Y. L. Lin and Y. T. Huang, J. Gastroenterology Hepatology, 22, 99, 2007. https://doi.org/10.1111/j.1440-1746.2006.04361.x

10. Y. C. Hsu, Y. T. Chiu, C. Y. Lee, C. F. Wu and Y. T. Huang, Canadian J. Physiology . Pharmacology,84, 967,2006. https://doi.org/10.1139/y06-050

11. H. S. Kim, Y. H. Zhang and Y. P. Yun, Planta Medica, 65, 135, 1999. https://doi.org/10.1055/s-1999-13974

12. H. W. Kim, J. C. Knowles and H. E. Kim, J Mater Sci Mater Med,16, 189, 2005. https://doi.org/10.1007/s10856-005-6679-y

13. J. T. Liou, Z. Y. Chen, L. J. Ho, S. P. Yang, D. M. Chang, C. C. Liang and J. H. Lai, Eur.J. Pharmacology, 589, 288, 2008. https://doi.org/10.1016/j.ejphar.2008.04.056

14. P. X. Ma and R. Zhang, J Biomed Mater Res, 46, 60, 1999. https://doi.org/10.1002/(SICI)1097-4636(199907)46:1<60::AID-JBM7>3.0.CO;2-H

15. J. Nakamatsu, F. G. Torres, O. P. Troncoso, Y. Min-Lin, A. R. Boccaccini, Biomacromol., 7, 3345, 2006. https://doi.org/10.1021/bm0605311

16. N. Sekiya, H. Hikiami, K. Yokoyama, K. Kouta, L. Sakakibara, Y. Shimada and K. Terasawa, Biological & Pharmaceutical Bulletin, 28,667, 2005. https://doi.org/10.1248/bpb.28.667

17. W. K. Seow, A. Ferrante, S. Y. Li and Y. H. Thong, Int Arch Allergy Appl Immunol, 85, 404,1988. https://doi.org/10.1159/000234542

18. H. J. Tao, J. Zhang, X. L. Wang and J. L. Gao, J. Polymer Scie.Part B-Polymer Phys., 45, 153, 2007. https://doi.org/10.1002/polb.20885

19. F. Tsuji, Polymer, 43, 1789, 2002. https://doi.org/10.1016/S0032-3861(01)00752-2

20. H. L. Wang, X. H. Zhang and T. H. Chang, Acta Pharmacologica Sinica, 23, 1114, 2002.

21. Q. S. Wang, Y. L. Cui, L. N. Gao, Y. Guo, R. X. Li and X. Z. Zhang, J Biomed Mater Res A, 102, 4098, 2014. https://doi.org/10.1002/jbm.a.35083

22. L. N. Woodard, K. T. Kmetz, A. A. Roth, V. M. Page and M. A. Grunlan, Biomacromolecules, 2017. [Epub ahead of print]

23. S. J. Wu and L. T. Ng, Biological & Pharmaceutical Bulletin, 30, 59, 2007. https://doi.org/10.1248/bpb.30.59

24. S. N. Wu, H. F. Li and Y. C. Lo, J.Pharm. Experim. Therapeutics, 292, 188, 2000.

25. F. Yang, R. Murugan, S. Ramakrishna, X. Wang, Y. X. Ma and S. Wang, Biomaterial, 25, 1891, 2004. https://doi.org/10.1016/j.biomaterials.2003.08.062

26. C. Yuan lu, Q. Ai di, L. Ke Feng and Y. Kang de, Tianjin, J. Traditional Chinese Medicine, 22,236, 2005.

27. X. Y. Yuan, A. F. T. Mak and K. D. Yao, Polymer Degrad. Stability, 75, 45, 2002. https://doi.org/10.1016/S0141-3910(01)00203-8

28. X. Y. Yuan, A. F. T. Mak and K. D. Yao, J. Appl. Polymer Scie., 85, 936, 2002. https://doi.org/10.1002/app.10490

29. C. F. Zhang, B. K. Zhu, G. L. Ji and Y. Y. Xu, J Appl Polymer Scie, 103, 1632, 2007. h https://doi.org/10.1002/app.24620

30. M. Zhang, S. L. Chen, S. W. Seto, Y. W. Kwan and S. W. Chan, Pharmaceutical Biology, 47, 366, 2009. https://doi.org/10.1080/13880200902753064

31. J. Zhao, X. Y. Yuan, Y. L. Cui, Q. B. Ge and K. D. Yao, J.Appl.Polymer Scie., 91, 1676, 2004. https://doi.org/10.1002/app.13323

32. G. Zhou, S. Liu, Y. Ma, W. Xu, W. Meng, X. Lin, W. Wang, S. Wang and J. Zhang, Int J Nanomedicine, 12, 7588, 2017.

33. H. G. Zhu, J. Ji and J. C. Shen, Macromol Rapid Communication,.23, 819, 2002. https://doi.org/10.1002/1521-3927(20021001)23:14<819::AID-MARC819>3.0.CO;2-9

.

Current number: