Вы здесь

Funct. Mater. 2018; 25 (1): 013-020.

doi:https://doi.org/10.15407/fm25.01.013

Influence of color centers on the luminescent response of radiation-damaged CsI:Tl crystal

V.Yakovlev1, L.Trefilova2, V.Alekseev3, A.Karnaukhova1, O.Shpylynska3, A.Lebedynskiy3, O.Tarakhno2

1Tomsk Polytechnic University, 30 Lenin Ave., 634034 Tomsk, Russian Federation
2National University of Civil Protection of Ukraine, 94 Chernyshevska Str., 61023 Kharkiv, Ukraine
3Institute for Scintillation Materials, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

Luminescence properties of Tl0va+ and Tl+vc- color centers induced by irradiation in CsI:Tl crystal are studied within a temperature range of 80-300 K. It is found, that electron Tl0va+ and hole Tl+vc- color centers arising due to radiation damage do not reduce conversion efficiency of CsI:Tl crystal, but participate in scintillation process to get energy from Tl+ centers by resonance. Degradation of the light yield of the irradiated CsI:Tl crystal is caused by the radiative energy transfer from Tl+ to Tl0va+ centers, whose emission is quenched at temperature above 210 K. Non-radiative energy transfer from Tl+ to Tl+vc- centers results in long-wave spectral shift and the duration increase of the scintillation pulse.

Keywords: 
thallium doped cesium iodide, radiation damage, color center, luminescence, energy transfer.
References: 

1. V.Yakovlev, L.Trefilova, A.Meleshko, J. Luminescence, 128, 1447 (2008). https://doi.org/10.1016/j.jlumin.2008.01.020

2. L.N.Shpilinskaya, D.I.Zosim, L.V.Kovaleva et al., in: Proc. 5th Int. Conf. on Inorganic Scintillators and their Applications, Moscow, Russia (2000), p.538.

3. R.Zhu, in: Proc. 5th Int. Conf. on Inorganic Scintillators and their Applications, Moscow, Russia (2000), p.73.

4. D.M.Beylin, A.I.Korchagin, A.S.Kuzmin et al., Nucl. Instr. Meth. Phys. Res. A, 541, 501 (2005). https://doi.org/10.1016/j.nima.2004.11.023

5. S.Longo, J.M.Roney, J. Instrumentation, 11, P08017 (2016). https://doi.org/10.1088/1748-0221/11/08/P08017

6. M.E.Globus, B.V.Grinyov, M.A.Ratner, Proc. SPIE, 3446, Hard X-Ray and Gamma-Ray Detector Physics and Applications, 242 (July 1, 1998) doi:10.1117/12.312897. https://doi.org/10.1117/12.312897

7. M.Ratner, B.Grinyov, A.Ratner, Rad. Meas., 38, 627 (2004). https://doi.org/10.1016/j.radmeas.2004.02.001

8. I.A.Beresin, V.M.Gorbachev, V.V.Kuzjanov et al., Atom. Energy, 35, 1055 (1973). https://doi.org/10.1007/BF01215834

9. M.M.Hamada, F.E.Costa, S.Shimizu et al., Nucl. Instr. Meth. Phys. Res. A, 486, 330 (2002). https://doi.org/10.1016/S0168-9002(02)00729-5

10. L.Trefilova, T.Charkina, A.Kudin et al., J. Luminescence, 102-103, 543 (2003). https://doi.org/10.1016/S0022-2313(02)00602-6

11. L.Trefilova, B.Grinyov, V.Alekseev et al., IEEE Trans. Nucl. Sci., 55, 1263 (2008). https://doi.org/10.1109/TNS.2008.924055

12. G.A.Babich, A.B.Blank, E.P.Kisil et al., Functional Materials, 8, 369 (2001).

13. V.Alekseev, I.Golub, M.Grinberg et al., Optical Materials, 30, 711 (2008). https://doi.org/10.1016/j.optmat.2007.02.018

14. A.F.Zatsepin, D.Yu.Biryukov, V.S.Kortov et al., Phys. Solid State, 44, 1671 (2002). https://doi.org/10.1134/1.1507246

15. V.Nagirnyi, A.Stolovich, S.Zazubovich et al., J. Phys.:Condens. Matter, 7, 3637 (1995). https://doi.org/10.1088/0953-8984/7/18/026

16. V.Yakovlev, L.Trefilova, A.Meleshko, J. Luminescence, 129, 790 (2009). https://doi.org/10.1016/j.jlumin.2009.02.012

17. R.T.Williams, K.B.Ucer, J.Q.Grim et al., IEEE Trans. Nucl. Sci., 57, 1187 (2010). https://doi.org/10.1109/TNS.2009.2033184

18. K.B.Ucer, G.Bizarri, A.Burger et al., Phys. Rev. B, 89, 165112 (2014). https://doi.org/10.1103/PhysRevB.89.165112

19. Chun-Rong Fu, Ling-Fu Chen, K.S.Song, J. Phys.:Condens. Matter, 11, 5517 (1999). https://doi.org/10.1088/0953-8984/11/28/312

.

Current number: