Вы здесь

Funct. Mater. 2018; 25 (1): 021-027.

doi:https://doi.org/10.15407/fm25.01.021

Luminescent properties of ZnSxSe(1-x) mixed crystals obtained by solid-phase synthesis and melt-growing

S.M.Galkin1, O.G.Trubaieva1, O.I.Lalayants1, I.A.Rybalka1, O.A.Shevchenko1, K.Yu.Bryleva2, L.O.Golinka-Bezshyyko3

1Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
2STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
3T.Shevchenko National University of Kyiv, 4 Hlushkova Ave., 03127 Kyiv, Ukraine

Abstract: 

The luminescence characteristics of ZnSxSe(1-x) mixed crystals (MC) obtained by solid-phase synthesis and melt-growing were studied. In X-ray luminescence spectra of ZnSxSe(1-x) powdered MC synthesized from ZnS and ZnSe powders, where x = 0.90 to 0.99, a non-elementary band with λmax ~ 520 nm (I1) was observed, but for ZnSxSe(1-x) with low concentrations of ZnS (x = 0.05) the luminescence band with λmax = 600-630 nm (I2) was a dominate. In X-ray luminescence spectra of ZnSxSe(1-x) MC (x = 0.05 to 0.3) obtained by the melt growth only I2 luminescence band with shifted maximum from 610 nm to 590 nm at sulfur concentration increasing was observed. It is shown that for the composition of ZnS0.15Se0.85 MC annealed in zinc vapor the light yield of X-ray luminescence is 1.6 times higher than in the commercial ZnSe(Te) crystals. In consideration of this fact it might be supposed, that this MC can find application in scintillation detectors of X-ray and low-energy gamma radiation.

Keywords: 
ZnS<sub>x</sub>Se<sub>(1-x)</sub> mixed crystals, solid-phase synthesis, luminescence, scintillator, radiation detector.
References: 

1. L.D.Suslina, D.L.Fedorov, S.G.Konnikov et al., FTT, 11, 1934 (1977).

2. N.K.Morozova, V.A.Kuznetsov, Nauka, Moscow (1987) [in Russian].

3. N.K.Morozova, V.A.Kuznetsov, V.D.Ryzhikov et al., Nauka, Moscow (1992) [in Russian].

4. H.Wreigth, W.Barnard, J.Heelbig, J. AM, 50, 1802 (1965).

5. N.N.Berchenko, V.E.Krevs, V.G.Sredni, Spreadsheets, Voenizdat, Moscow (1982) [in Russian].

6. K.Kassali, N.Bouarissa, J. Mat. Chem. Phys., 76, 255 (2002). https://doi.org/10.1016/S0254-0584(01)00546-6

7. K.Mochizuki, J. Cryst. Growth, 58, 87 (1982). https://doi.org/10.1016/0022-0248(82)90213-5

8. V.Kumar, T.P.Sharma, J. Opt. Mater., 10, 253 (1998). https://doi.org/10.1016/S0925-3467(98)00003-2

9. J.H.Song, E.D.Sim, K.S.Baek et al., J. Cryst. Growth, 214, 460 (2000). https://doi.org/10.1016/S0022-0248(00)00130-5

10. N.K.Morozova, D.A.Mideros, I.A.Karetnikov et al., FTT, 40, 1185 (2006).

11. N.K.Morozova, D.A.Mideros, E.M.Gavrishuk, News. Higher Education Physics, 10, 166 (2006).

12. K.Ohmori, M.Ohishi, T.Okuda, J. Appl. Phys., 49, 4506 (1978). https://doi.org/10.1063/1.325458

13. G.Ya.Gurgula, V.M.Boychuk, M.P.Vadyk et al., FTT, 12, 395 (2011).

14. V.D.Ryzhikov, V.V.Chernikov, L.P.Galchinetskii et al., J. Cryst. Growth., 197, 655 (1999). https://doi.org/10.1016/S0022-0248(98)00771-4

15. V.D.Ryzhikov, O.D.Opolonin, S.N.Galkin et al., J. IEEE Nucl. Sci, 10.1109PP, 2204 (2012).

16. V.D.Ryzhikov, B.V.Grinyov, S.N.Galkin et al., J. Cryst. Growth., 364, 111 (2013). https://doi.org/10.1016/j.jcrysgro.2012.11.034

17. N.K.Morozova, I.A.Karetnikov, V.G.Plotnichenko et al., FTT, 38, 39 (2004).

18. N.K.Morozova, I.A.Karetnikov, E.M.Gavrishchuk et al., Inorg. Mater, 40, 1138 (2004). https://doi.org/10.1023/B:INMA.0000048210.15390.e1

19. A.A.Pelix, B.S.Aranovich, E.A.Petrov, Chemistry and Technology of Carbon Disulfide, Leningrad (1986) [in Russian].

20. D.L.Wood, J.Tauc, Phys. Rev., 5, 3144 (1972). https://doi.org/10.1103/PhysRevB.5.3144

21. Z.T.Kang, C.J.Summers, B.K.Wagner et al., Appl. Phys. Lett., 88, 111904 (2006). https://doi.org/10.1063/1.2185427

.

Current number: