Вы здесь

Funct. Mater. 2018; 25 (1): 028-033.

doi:https://doi.org/10.15407/fm25.01.028

CaWO4@MPSiO2 nanocomposite: synthesis and characterization

K.Hubenko1, I.Bespalova1, P.Maksimchuk1, P.Mateychenko2, R.Grynyov3, S.Yefimova1

1Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
2Institute for Single Crystals, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
3Ariel University, Natural Science Faculty, Physics Department, P.O.B. 3, 407000 Ariel, Israel

Abstract: 

The features of obtaining a nanocomposite consisting of the CaWO4 core which is a scintillation nanocrystal and a mesoporous SiO2 shell (CaWO4@MPSiO2) are considered. The results of the investigation of microscopic and optical parameters of CaWO4@MPSiO2 nanocomposite are presented. The mesoporous SiO2 shell applied to the nanocrystal can be used both as a host for the photosensitizer, and set the necessary distance between the donor and the energy acceptor.

Keywords: 
Nanocomposite, CaWO<sub>4</sub>, Mesoporous SiO<sub>2</sub>, X-Ray Induced Photodynamic Therapy.
References: 

1. D.Dolmans, D.Fukumura, R.Jain, Nat. Rev. Cancer, 3, 380 (2003). https://doi.org/10.1038/nrc1071

2. S.Yano, S.Hirohara, M.Obata et al., J. Photochem. Photobiol. C: Photochem. Rev., 1, 46 (2011). https://doi.org/10.1016/j.jphotochemrev.2011.06.001

3. C.N.Zhou, J. Photochem. Photobiol., B, 3, 299 (1989). https://doi.org/10.1016/1011-1344(89)80035-1

4. R.Allison, G.Downie, R.Cuenca et al., Photodiag. and Photodynam. Therapy, 1, 27 (2004). https://doi.org/10.1016/S1572-1000(04)00007-9

5. V.Ntziachristos, C.Bremer, R.Weissleder, Europ. J. Radiology, 13, 195 (2003).

6. W.Chen, J.Zhang, J. Nanosci. Nanotechnol., 6, 1159 (2006). https://doi.org/10.1166/jnn.2006.327

7. K.Kirakci, P.Kubat, K.Fejfarova, Inorg. Chem., 2, 803 (2016). https://doi.org/10.1021/acs.inorgchem.5b02282

8. S.Lucky, K.Soo, Y.Zhang, Chem. Rev., 115, 1990 (2015). https://doi.org/10.1021/cr5004198

9. W.Chen, J.Zhang, J. Nanosci. Nanotechnol., 6, 1159 (2006). https://doi.org/10.1166/jnn.2006.327

10. A.-L.Bulin, C.Truillet, R.Chouikrat et al., J. Phys. Chem. C, 117, 21583 (2013). https://doi.org/10.1021/jp4077189

11. Y.Tang, J.Hu, A.Elmenoufy et al., ACS Appl. Mater. & Interfaces, 7, 12261 (2015). https://doi.org/10.1021/acsami.5b03067

12. H.Chen, G.Wang, Y.-J.Chuang et al., J. Nano Lett., 15, 2249 (2015). https://doi.org/10.1021/nl504044p

13. P.Retif, S.Pinel, M.Toussaint et al., Theranostics, 5, 1030 (2015). https://doi.org/10.7150/thno.11642

14. S.Lindhoud, A.Westphal, C.P.M.van Mierlo et al., Int. J. Molecul. Scie., 15, 23836 (2014). https://doi.org/10.3390/ijms151223836

15. J.Lee, M.Brennan, R.Wilton et al., Nano Lett., 15, 7161 (2016). https://doi.org/10.1021/acs.nanolett.5b03442

16. J.R.Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York (1999).

17. H.Homayoni, K.Jiang, X.Zou, Photodiag. and Photodynam. Therapy, 2, 258 (2015). https://doi.org/10.1016/j.pdpdt.2015.01.003

18. J.Lee, N.Rancilio, J.Poulson, ACS Appl. Mat. & Interfaces, 13, 8608 (2016). https://doi.org/10.1021/acsami.6b00727

19. Y.Yang, Mater. Res. Innov., 4, 267 (2012). https://doi.org/10.1179/1433075X12Y.0000000032

20. A.Kamkaew, F.Chen, Y.Zhan et al., ASC Nano, 4, 3918 (2016). https://doi.org/10.1021/acsnano.6b01401

21. UA. Patent 113942 (2017).

22. Y.Wang, B.Li, L.Zhang, Langmuir, 28, 1657 (2012). https://doi.org/10.1021/la204494v

23. I.Typitsyna, P.Maksimchuk, A.Yakubovskaya et al., Functional Materials, 4, 535 (2016). https://doi.org/10.15407/fm23.04.357

24. S.Zeng, R.Tang, H.Su, NANO: Brief Rep. and Rev., 4, 1650039 (2016). https://doi.org/10.1142/S1793292016500399

25. Y.Zhang, W.Gong, J.Yu, The Royal Soc. Chem. Adv., 5, 62527 (2015).

26. I.Tupitsyna, P.Maksimchuk, A.Yakubovskaya et al., Functional Materials, 1, 16 (2017). https://doi.org/10.15407/fm24.01.016

.

Current number: