Funct. Mater. 2018; 25 (1): 034-042.

doi:https://doi.org/10.15407/fm25.01.034

Optical, thermal, strength properties and SHG efficiency of KDP single crystals doped with N,N′-dimethyl urea

E.I.Kostenyukova1, O.N.Bezkrovnaya1, E.F.Dolzhenkova1, I.M.Pritula1, A.G.Doroshenko1, M.A.Chaika1, A.G.Fedorov2, S.V.Khimchenko2

1Institute for Single Crystals, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2Division of Functional Materials Chemistry, SSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

Pure single crystals of potassium dihydrophosphate (KDP) and the ones doped with N,N′-dimethylurea (NN′DU) were grown by the temperature reduction method onto a point seed. The dopant concentration in the mother liquor was 0.15 and 0.45 wt. %. The study of the transmission spectra of KDP:NN′DU crystals, as well as the change in their strength properties (mechanical and laser strength) and thermal properties (differential thermal and thermogravimetric analyses) in the growth sectors {101} and {100} confirms the occurrence of NN′DU molecules in both growth sector. It was shown that doping of the crystals with NN′DU molecules led to an increase in the efficiency of second harmonic generation by two times in the sector {100} of KDP:NN′DU crystals as compared with pure KDP.

Keywords: 
KDP crystals, N,N′-dimethylurea, laser damage threshold, microhardness, nonlinear optic materials.
References: 

1. I.Pritula, V.Gayvoronsky, Yu.Gromov et al., Opt. Commun., 282, 1141 (2009). https://doi.org/10.1016/j.optcom.2008.11.043

2. K.D.Parikh, D.J.Dave, B.B.Parekh et al., Mater. Sci., 30, 105 (2007).

3. P.Kumaresan, S.Moorthy Babu, P.M.Anbarasan, Opt. Mater., 30, 1361 (2007). https://doi.org/10.1016/j.optmat.2007.07.002

4. D.J.Dave, K.D.Parikh, B.B.Parekh et al., J. Optoelectron. Adv. Mater., 11, 602 (2009).

5. R.C.Eckard, H.Masuda, Y.X.Fan et al., J. Quant. Electron., 26, 922 (1990). https://doi.org/10.1109/3.55534

6. I.M.Pritula, E.I.Kostenyukova, O.N.Bezkrovnaya et al., Opt. Mater., 57, 217 (2016). https://doi.org/10.1016/j.optmat.2016.04.044

7. E.I.Kostenyukova, O.N.Bezkrovnaya, M.I.Kolybaeva et al., Functional Materials, 23, 27 (2016). https://doi.org/10.15407/fm23.01.027

8. V.Ya.Gayvoronsky, M.A.Kopylovsky, M.S.Brodyn et al., Laser Phys. Lett., 10, 035401 (2013). https://doi.org/10.1088/1612-2011/10/3/035401

9. I.M.Pritula, A.V.Kosinova, D.A.Vorontsov et al., J. Cryst. Growth, 355, 26 (2012). https://doi.org/10.1016/j.jcrysgro.2012.06.033

10. I.V.Shnaidshtein, B.A.Strukov, S.V.Grabovskii et al., Phys. Solid State, 43, 2276 (2001). https://doi.org/10.1134/1.1427956

11. D.Xue, S.Zhang, Physica B, 262, 78 (1999). https://doi.org/10.1016/S0921-4526(98)00465-7

12. D.Xue, S.Zhang, J. Phys. Chem. Solids, 57, 1321 (1996). https://doi.org/10.1016/0022-3697(95)00326-6

13. D.Xue, S.Zhang, Chem. Phys. Lett.s, 301, 449 (1999). https://doi.org/10.1016/S0009-2614(99)00055-X

14. R.Ledzion, P.Gorski, W.Kucharczyk, J. Phys. Chem. Solids, 68, 1965 (2007). https://doi.org/10.1016/j.jpcs.2007.06.011

15. J.Podder, J. Cryst. Growth, 70, 237 (2002).

16. I.Pritula, A.Kosinova, M.Kolybayeva et al., Mater. Res. Bull., 43, 2778 (2008). https://doi.org/10.1016/j.materresbull.2007.10.040

17. P.M.Wankhade, G.G.Muley, Res. Phys., 3, 97 (2013).

18. G.G.Muley, M.N.Rode, B.H.Pawar, Optoelectron Adv. Mater-Rapid Commun., 3, 704 (2009).

19. W.L.Bond, Acta Crystallograph., 13, 814 (1960). https://doi.org/10.1107/S0365110X60001941

20. A.H.Compton, S.K.Allison, X-Rays in Theory and Experiment, D. Van Nostrand (1967).

21. J.E.Ayers, T.Kujofsa, P.Rago et al., Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization. Taylor & Francis Group (2017).

22. J.Ayers, J.Ladell, Phys. Rev. A , 37, 2404 (1988). https://doi.org/10.1103/PhysRevA.37.2404

23. I.M.Pritula, A.V.Kosinova, O.N.Bezkrovnaya et al., Opt. Mater., 35, 2429 (2013). https://doi.org/10.1016/j.optmat.2013.06.046

24. N.Y.Garces, K.T.Stevens, L.E.Halliburton et al., J. Cryst. Growth, 225, 435 (2001). https://doi.org/10.1016/S0022-0248(01)00911-3

25. P.Kumaresan, S.M.Babu, P.M.Anbarasan, J. Optoelectron. Adv. Mater., 9, 2780 (2007).

26. G.G.Muley, M.N.Rode, B.H.Pawar, Acta Physi Polonica A, 116, 1033 (2009). https://doi.org/10.12693/APhysPolA.116.1033

27. S.A.de Vries, P.Goedtkindt, S.L.Bennett et al., Phys. Rev. Lett., 80, 2229 (1998). https://doi.org/10.1103/PhysRevLett.80.2229

28. X.Ren, D.Xu, D.Xue, J. Cryst. Growth, 310, 205 (2008). https://doi.org/10.1016/j.jcrysgro.2007.11.008

29. D.Xu, D.Xue, J. Cryst. Growth, 286, 108 (2006). https://doi.org/10.1016/j.jcrysgro.2005.09.040

30. C.H.Guin, M.D.Katrich, A.I.Savinkov et al., Kristall and Technik, 15, 479 (1980). https://doi.org/10.1002/crat.19800150413

31. J.Podder, J. Cryst. Growth, 237, 1 (2002).

32. J.P.Hirth, J.Lothe, Theory of Dislocations, Wiley, New York (1982)

.

Current number: