Funct. Mater. 2018; 25 (1): 048-053.

doi:https://doi.org/10.15407/fm25.01.048

Crystal structure and electrical resistance of Ni-W alloys

V.V.Derevyanko, M.S.Sunhurov, T.V.Sukhareva, V.A.Finkel, Yu.N.Shakhov

National Science Center Kharkiv Institute of Physics and Technology NSC KIPT, 1 Akademichna St., 61108 Kharkiv, Ukraine

Abstract: 

The purpose of the paper is to establish the correlation between chemical composition, phase content and magnetic ordering of Ni(1-x)Wx alloys and behavior of their electronic properties in a wide range of temperatures. Alloys Ni(1-x)Wx of different composition (0 < x < 0.5) are synthesized. It is studied the crystal structure and the nature of the temperature dependence of electrical resistivity. It is shown, that in the range of concentrations of tungsten 0 < x < ~0.15 there is only face centered cubic (FCC) lattice, whereas, at the higher values of x, the Ni-W alloy is two-phase system consisting of the face centered and body centered cubic (BCC) crystal structures. The strong drop in residual resistivity ratio (RRR) with increasing of x in the ferromagnetic area of single-phase FCC alloy, the weak dependence of RRR in the paramagnetic area of the FCC alloy, and growth of RRR in the two-phase region (FCC + BCC) of Ni-W are observed. It is established, that in the two-phase region of the alloy at concentrations of ~0.15 < x < 0.3 the electric current flows through the matrix of FCC Ni-W. At the higher concentrations of tungsten (x≥~0.3) the mechanism of charge transfer changes: electric current flows through percolation channels, formed by BCC phase of Ni-W system.

Keywords: 
Ni-W, phase composition, magnetic ordering, resistivity, percolation.
References: 

1. M.H.Allahyarzadeh, M.Aliofkhazraei, A.R.Rezvanian et al., Surf. Coat. Techn., 307, 978 (2016). https://doi.org/10.1016/j.surfcoat.2016.09.052

2. O.Younes, E.Gileadi, Electrochem. Solid State, 3, 543 (2000). https://doi.org/10.1149/1.1391203

3. S.Yao, S.Zhao, H.Guo, M.Kowaka, Corrosion, 52, 183 (1996). https://doi.org/10.5006/1.3292112

4. O.Younes, L.Zhu, Y.Rosenberg et al., Langmuir, 17, 8270 (2001). https://doi.org/10.1021/la010660x

5. Y.X.Zhou, S.Bhuiyan, S.Scruggs et al., Supercond. Sci. Techn., 16, 1077 (2003). https://doi.org/10.1088/0953-2048/16/9/319

6. Y.X Zhou, R.Naguib, H.Fang et al., Supercond. Sci. Techn., 17, 947 (2004). https://doi.org/10.1088/0953-2048/17/7/021

7. A.Goyal, D.P.Norton, J.D.Budai et al., Appl. Phys. Lett., 69, 1795 (1996). https://doi.org/10.1063/1.117489

8. Y.Iijima, N.Tanabe, O.Kohno et al., Appl. Phys. Lett., 60, 769 (1992). https://doi.org/10.1063/1.106514

9. Y.X.Zhou, T.Rizwan, K.Salama, IEEE Trans. Appl. Supercond., 13, 2703 (2003). https://doi.org/10.1109/TASC.2003.811961

10. J.Trowbridge, S.Sheldon, Proc. Amer. Acad. Arts Sci., 24, 181 (1889). https://doi.org/10.2307/20021560

11. A.Genc, M.L.Ovecoglu, M.Baydogan, S.Turan, Mater. Design, 495 (2012). https://doi.org/10.1016/j.matdes.2012.06.024

12. D.M.S.Bagguley, M.Heath, Proc. Phys. Soc., 90, 4 (1966).

13. V.A.Finkel, A.M.Bovda, V.V.Derevyanko et al., Functional Materials, 19, 109 (2012).

14. V.V.Derevyanko, V.A.Finkel, T.V.Sukhareva et al., Phys. Solid State, 59, 229 (2017). https://doi.org/10.1134/S1063783417020056 15 K.Vinod, S.Shante, S.Kirkpatrick, Adv. Phys., 20, 85 (1971)

.

Current number: