Вы здесь

Funct. Mater. 2018; 25 (1): 054-060.

doi:https://doi.org/10.15407/fm25.01.054

Thermoelectric properties of cold pressed samples of semiconductor (Bi1-xSbx)2Te3 solid solutions

K.V.Martynova, E.I.Rogacheva

National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova Str., 61002 Kharkiv, Ukraine

Abstract: 

The composition dependences of thermoelectric (TE) properties of (Bi1-xSbx)2Te3 solid solutions (0 < x < 1) produced by cold pressing and subsequent annealing were investigated at room temperature. Samples were prepared from cast polycrystals, obtained by the cooling of melt down to room temperature in evacuated quartz ampoules and subsequent annealing. It was established that cast samples exhibited p-type conductivity in the entire composition range, and an increase in the Sb2Te3 content led to the growth of electrical conductivity and drop of the Seebeck coefficient. The change of the conductivity type from positive to negative in the composition range x = 0 - 0.6 took place after cold pressing and composition dependencies of the properties became more complex. The maximum figure of merit value (Zmax = (3.1±0.4)·10-3 K-1) that was achieved in cold-pressed annealed samples at x = 0.8 was comparable to the values of Z for single crystals of undoped (Bi1-xSbx)2Te3 solid solutions and for polycrystalline samples produced by other methods. It follows from the data obtained that the proposed method of preparing the samples of (Bi1-xSbx)2Te3 solid solutions by cold pressing and subsequent annealing may appear to be useful in thermoelectric devices.

Keywords: 
(Bi<sub>1-x</sub>Sb<sub>x</sub>)<sub>2</sub>Te<sub>3</sub> solid solutions, cold pressing, annealing, Seebeck coefficient, electrical conductivity, thermal conductivity, figure of merit.
References: 

1. Thermoelectrics Handbook: Macro to Nano, ed. by D.M.Rowe, Boca Raton: CRC Press, Taylor & Francis Group (2006).

2. H.J.Goldsmid, Introduction to Thermoelectricity, Springer Series in Materials Science, v.121, Springer-Verlag, Berlin Heidelberg (2016), p.278.

3. Materials Aspect of Thermoelectricity, ed. by C.Uher, Boca Raton: CRC Press (2016), p.610. https://doi.org/10.1201/9781315197029

4. C.H.Champness, P.T.Chiang, P.Parekh, Can. J. Phys., 43, 653 (1965). https://doi.org/10.1139/p65-060

5. H.-W.Jeon, H.-P.Ha, D.-B.Hyun et al., J. Phys. Chem. Solids, 52, 579 (1991). https://doi.org/10.1016/0022-3697(91)90151-O

6. T.S.Oh, D.B.Hyun, N.V.Kolomoets, Scripta Mater., 42, 849 (2000). https://doi.org/10.1016/S1359-6462(00)00302-X

7. K.Sharma, M.Lal, J. Nano Electr. Phys., 6, 01007 (2014).

8. L.D.Ivanova, L.I.Petrova, Yu.V.Granatkina et al., Inorg. Mater., 47, 521 (2011). https://doi.org/10.1134/S0020168511050086

9. G.S.Nolas, J.Sharp, H.J.Goldsmid, Thermoelectrics: Basic Principles and New Material Development, Springer Series in Materials Science, v. 45, Berlin, Springer Science & Business Media (2013), p.293.

10. L.D.Ivanova, Yu.V.Granatkina, Inorg. Mater., 36, 672 (2000). https://doi.org/10.1007/BF02758419

11. G.Kavei, K.Ahmadi, A.K.Shadmehr, A.Kavei, Mat. Sci.-Pol., 29, 143 (2011). https://doi.org/10.2478/s13536-011-0021-9

12. C.-W.Hwang, D.-B.Hyun, H.-Ph.Ha et al., J. Mater. Sci., 36, 3291 (2001). https://doi.org/10.1023/A:1017959008268

13. J.Jiang, L.Chen, S.Bai et al., J. Cryst. Growth, 277, 258 (2005). https://doi.org/10.1016/j.jcrysgro.2004.12.144

14. L.N.Luk′yanova, V.A.Kutasov, P.P.Konstantinov, V.V.Popov, Phys. Solid State, 52, 1599 (2010)

15. M.G.Lavrent′ev, V.B.Osvenskii, G.I.Pivovarov, Tech. Phys. Let., 42, 105 (2016). https://doi.org/10.1134/S1063785016010260

16. J.M.Belov, M.P.Volkov, S.M.Manyakin, in: Proc. ICT 98. XVII Int. Conf. on Thermoelectrics, 247-2481998 (1998).

17. E.Koukharenko, N.Frety, V.G.Shepelevich, J.C.Tedenac, J. Alloys Comp., 327, L1 (2001).

18. C.D.Moon, T.S.Kim, J. All. Com., 536S, S559 (2012).

19. A.A.Melnikov, V.G.Kostishin, S.A.Kichik, V.V.Alenkov, Modern El. Mat., 1, 109 (2015).

20. N.Kh.Abrikosov, L.V.Poretskaya, Inorg. Mater., 1, 503 (1965).

21. H.J.Kim, H.C.Kim, D.B.Hyun et al., Metals and Mater., 4, 75 (1998). https://doi.org/10.1007/BF03026068

22. J.Y.Yang, T.Aizawa, A.Yamamoto et al., J. Alloy. Comp., 312, 326 (2000). https://doi.org/10.1016/S0925-8388(00)01159-2

23. J.Seo, K.Park, D.Lee, C.Lee, Scripta Mater., 38, 477 (1998). https://doi.org/10.1016/S1359-6462(97)00463-6

24. C.N.Liao, L.C.Wu, J.S.Lee, J. Alloy. Comp., 490, 468 (2010). https://doi.org/10.1016/j.jallcom.2009.10.047

25. N.Kh.Abrikosov, V.F.Bankina, L.V.Poretskaya et al., Semiconducting II-VI, IV-VI, and V-VI Compounds: Monographs in Semiconductor Physics, Springer, Berlin (2013), p.252.

26. X.-D.Liu, Y.-H.Park, Mater. Trans., 43, 681 (2002). https://doi.org/10.2320/matertrans.43.681

27. J.M. Schultz, J.P.McHung, W.A.Tiller, J. Appl. Phys., 33, 2443 (1962). https://doi.org/10.1063/1.1728990

28. S.Shin, H.P.Ha, D.B.Hyun et al., J. Phys. Chem. Solids, 58, 671 (1997). https://doi.org/10.1016/S0022-3697(96)00049-2

29. X.Fan, J.Yang, W.Zhu et al., J. Alloy. Comp., 448, 308 (2008). https://doi.org/10.1016/j.jallcom.2006.10.062

30. J.Navratil, Z.Stary, T.Plechecek, Mater. Res. Bull., 31, 1559 (1996). https://doi.org/10.1016/S0025-5408(96)00149-3

31. K.Park, S.W.Nam, C.H.Lim, Intermetallics, 18, 1744 (2010). https://doi.org/10.1016/j.intermet.2010.05.011

32. Z.Li, G.L.Zhao, P.Zhang et al., Mat. Sci. Appl., 3, 833 (2012). https://doi.org/10.4236/am.2012.38124

33. F.A.A.Amin, A.S.S.Al-Ghaffari, M.A.Issa, A.M.Massib, J. Mat. Sci., 27, 1250 (1992). https://doi.org/10.1007/BF01142032

34. Y.Morisaki, H.Araki, E.Tanabe et al., J. Japan Inst. Metals, 70, 447 (2006). https://doi.org/10.2320/jinstmet.70.447

35. L.P.Bulat, D.A.Pshenai-Severin, V.V.Karatayev, in: "The Delivery of Nanoparticles", ed. by A.A. Hashim, Rijeka, InTech (2012), p.540.

36. M.-J.Kao, C.-Y.Wu, M.-J.Chen, in: Proc. SEEIE 2016 Int. Conf. on Sustainable Energy, Environment and Information Engineering, Bangkok, Thailand (2016), p.394.

37. E.I.Rogacheva, K.V.Martynova, A.S.Bondarenko, J. Thermoelectricity, 5, 47 (2016)

.

Current number: