Вы здесь

Funct. Mater. 2018; 25 (1): 138-143.


Three-dimensional generalization and verification of structured bounding surface model for natural clay

Cui Yunliang, Wang xinquan, Zhou lianying

School of Engineering, Zhejiang University City College, Hangzhou, Zhejiang, 310015, China


As the proposed structured bounding surface model can only be used to solve planar strain problems of natural soft clay, a three-dimensional adaptive failure criterion is adopted to improve the model to capture the three-dimensional behaviors of natural soft clay. The three-dimensional adaptive failure criterion incorporated in this model can cover the Lade-Duncan criterion and the Matsuoka-Nakai criterion as its special ones. The structured bounding surface model is generalized into three-dimensional stress space by using the three-dimensional adaptive failure criterion. After improved with the three-dimensional adaptive failure criterion, the model can be seen as a modified bounding surface model which considers the destructuration and three-dimensional behaviors and neglects the anisotropy of natural soft clay. The simulations of undrained compression and extension tests of K0 consolidation state Bothkennar clay shows the unimportance of neglecting anisotropy in this model. It was validated on Pisa clay that the improved model can simulate well the three dimensional behaviors of natural soft clay under true triaxial conditions.

natural soft clay, bounding surface, three-dimensional behavior, adaptive failure criterion

1. D. Wang and L. Korkiala-Tanttu, , Engin.Geol., 214, 20, 2016. https://doi.org/10.1016/j.enggeo.2016.09.006

2. L. Callisto, G. Calabresi, Geotechn, 48, 495, 1998. https://doi.org/10.1680/geot.1998.48.4.495

3. E. L. Liu, H. S. Yu, C. Zhou, et al, Intern. J.Geomech., 17, 1, 2017.

4. Amir Hamidi, Saeed Tourchi and Fatemeh Kardooni, J. Rock Mech. Geotechn.Eng., 9, 1094, 2017. https://doi.org/10.1016/j.jrmge.2017.09.002

5. Y. F. Dafalias, L. R. Herrmann, J. Eng. Mech. ASCE, 112, 1263, 1986. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:12(1263)

6. A. AI-Tabbaa, D. M. Wood, Proceeding of the 3rd International Conference on Numerical Models in Geomechanics, Niagara Falls, pp.91-99, 1989.

7. M. Rouainia, D. M. Wood, Geotechn., 50, 153, 2000. https://doi.org/10.1680/geot.2000.50.2.153

8. M. Taiebat, Y. F. Dafalias, R. Peek, Intern. J. Num. Anal. Meth. Geomech., 34. 1009, 2010.

9. Y. L. Cui, X. Q. Wang, S. M. Zhang, Functional Materials, 24. 628, 2017. https://doi.org/10.15407/fm24.04.628

10. Y. Xiao, H. L. Liu and R. Y. Liang, Scie. China Ser.E, 54, 805, 2011. https://doi.org/10.1007/s11431-011-4313-4

11. Y. Xiao, H. L. Liu, J. G. Zhu, et al., Scie. China Ser.E, 55, 2877, 2012. https://doi.org/10.1007/s11431-012-4979-2

12. P. R. Smith, R. J. Jardine, D. W. Hight, Geotechn.,42, 257, 1992. https://doi.org/10.1680/geot.1992.42.2.257

13. L. Callisto L, A. Gajo, D. M. Wood, Geotechn., 52, 649, 2002. https://doi.org/10.1680/geot.2002.52.9.649


Current number: