Funct. Mater. 2018; 25 (1): 144-150.
Influence of surface treatment conditions for organic crystalline scintillators on their scintillation characteristics
1Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
2National University of Civil Protection of Ukraine, 94 Chernyshevska Str., 61023 Kharkiv, Ukraine
3Institute of Radio Astronomy, National Academy of Sciences of Ukraine, 4 Mystetstv Str., 61002 Kharkiv, Ukraine
4V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
The scintillation and optical characteristics of alpha and beta radiation detectors based on organic crystalline scintillators are investigated after the treatment of their surfaces with different compositions. The polishing composition has been matched, which ensures an improvement in the quality of the polished surface and an improvement in the stated characteristics of alpha and beta radiation detectors based on stilbene and activated p-terphenyl single crystals by increasing the light collection coefficient. The parameters of these detectors are retained after exposure to a temperature of +60°C for 12 h. It is also shown that the use of a matched polishing compound makes it possible to obtain a detector of high spectrometric quality based on an activated p-terphenyl single crystal 6×6×6 mm3 in coupling with a SiPM. The energy resolutions for this detector are 5.7, 7.9 and 11.9 % when electrons of internal conversion with energies of 1048, 976 and 554 keV are being registered.
1. N.Z.Galunov, V.P.Seminozhenko, Radioluminescence of Organic Condensed Media. Theory and Application, Naukova Dumka, Kiev (2015) [in Russian].
2. L.A.Lisitsyna, I.A.Tupitsyna, L.N.Trefilova, in: Proc. IOP Conf. Series: Materials Science and Engineering, 81, 012024 (2015).
3. O.V.Dudnik, M.Prieto, E.V.Kurbatov et al., Kosm. Nauka Tekhnol., 18, 22 (2012). https://doi.org/10.15407/knit2012.06.022
4. O.V.Dudnik, L.A.Andryushenko, V.A.Tarasov, E.V.Kurbatov, Instrum. Exp. Tech., 58, 206 (2015). https://doi.org/10.1134/S0020441215020074
5. Yu.L.Zabulonov, V.M.Burtnyak, L.A.Odukalets, Nauka Innov., 13, 46 (2017). https://doi.org/10.15407/scin13.03.046
6. L.A.Andryushchenko, S.V.Budakovskii, N.Z.Galunov et al., Instrum. Exp. Tech., 42, 759 (1999).
7. A.A.Ananenko, L.A.Andryushchenko, Yu.T.Vydai et al., Instrum. Exp. Tech., 51, 795 (2008). https://doi.org/10.1134/S0020441208060043
8. L.A.Andryushchenko, S.V.Budakovskii, N.Z.Galunov et al., Instrum. Exp. Tech., 46, 591 (2003). https://doi.org/10.1023/A:1026012931983
9. N.Z.Galunov, O.A.Tarasenko, V.A.Tarasov, J. Appl. Spectr., 80, 550 (2013). https://doi.org/10.1007/s10812-013-9803-7
10. A.M.Kudin, Yu.A.Borodenko, B.V.Grinyov et al., Instrum. Exp. Tech., 53, 39 (2010). https://doi.org/10.1134/S0020441210010057
11. Patent Russia, 2142147, (1999).
12. O.V.Dudnik, E.V.Kurbatov, V.A.Tarasov et al., Nucl. Inst. Meth. Phys. Res. A, 664, 148 (2012). https://doi.org/10.1016/j.nima.2011.10.051
13. L.A.Andryushenko, B.V.Grinev, V.A.Tarasov, Instrum. Exp. Tech., 54, 603 (2011). https://doi.org/10.1134/S0020441211050010
14. Yu.V.Milman, N.Z.Galunov, S.I.Chugunova et al., Nanosistemy, Nanomaterialy, Nanotehnologii, 14, 461 (2016).
15. V.V.Rogov, A.G.Vetrov, A.A.Boyarintsev, J. Superhard Mater., 6, 85 (2003).
16. Ya.A.Kosenok, V.E.Gayshun, O.I.Tyulenkova et al., Nanosistemy, Nanomaterialy, Nanotehnologii, 12, 269 (2014).
17. A.S.Artyomov, Fizika Tverdogo Tela, 46, 670 (2004).
18. L.A.Andryushenko, L.I.Voloshina, I.D.Vlasova et al., Instrum. Exp. Tech., 55, 179 (2012). https://doi.org/10.1134/S0020441212010137
19. L.A.Andryushenko, B.V.Grinev, Instrum. Exp. Tech., 41, 447 (1998).
20. P.Rodzyal, Hermetic Sealing of REA Elements, Radio i Svyaz′, Moscow (1981) [in Russian].
21. T.A.Gorbacheva, V.A.Tarasov, Yu.T.Vidayi et al., Functional Materials, 15, 97 (2008)
.