Вы здесь

Funct. Mater. 2018; 25 (1): 158-164.

doi:https://doi.org/10.15407/fm25.01.158

Promising method for determining the concentration of nano-sized diamond powders in water suspensions

H.V.Dorozinska1, G.V.Dorozinsky2, V.P.Maslov2

1Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41 Nauky Pr., 03028 Kyiv, Ukraine
2National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37 Peremogy Ave., 03056 Kyiv, Ukraine

Abstract: 

This work is devoted to investigation of water suspension of synthetic diamond powders with sizes of particles smaller than one micrometer, which is used in processing the materials of parts of optical and electronic devices. It has been shown the influence of various concentrations of diamond powders in distilled water on the response value of the sensor based on surface plasmon resonance (SPR) phenomenon. For comparison, there are performed investigations using the conductometric method. Experimental results show high sensitivity of the SPR method (840 ang. min · μg-1·ml) to the low concentrations of the powder from 2 up to 50 μg/ml. The conductometric method is spurious. Experimental results are in a good agreement with the suspension model based on the approaches by Maxwell-Garnett and mathematical formalism of Jones scattering matrices (relative error of measurement results is no more than 5 %). The obtained results can be useful in applications for technological processes in enterprises of optical and electronic industry.

Keywords: 
diamond powders, water suspensions, concentration determination, surface plasmon resonance, conductivity.
References: 

1. A.Yu.Filatov, Rezaniye i Instrument v Tekhnologicheskikh Sistemakh, 85, 309 (2015).

2. J.C.Sung, J.Lin, Diamond Nanotechnology: Synthesis and Applications, Pan Stanford Publishing Pte Ltd., Singapore (2010).

3. V.Yu.Dolmatov, Nanotekhnika, 13, 56 (2008).

4. G.V.Sakovich, V.F.Komarov, Ye.A.Petrov, J. Superhard Mater., 3, 3 (2002).

5. Ye.V.Goncharuk, V.I.Zarko, V.M.Bogatyryov et al., Him. Fiz. Tehnol. Poverhni, 5, 210 (2014).

6. J.Aubin, M.Ferrando, V.Jiricny, Chem. Eng. Sci., 65, 2065 (2010). https://doi.org/10.1016/j.ces.2009.12.001

7. H.G.Merkus, Particle Size Measurements: Fundamentals, Practice, Quality, Springer (2009).

8. V.M.Kutya, Bull. Engin. Acad. Ukraine, 3, 242 (2013).

9. O.Esteban, F.B.Naranjo, N.Diaz-Herrera et al., Sensor Actuat. B-Chem., 158, 372 (2011). https://doi.org/10.1016/j.snb.2011.06.038

10. S.H.Yeom, O.G.Kim, B.H.Kanget et al., Opt. Express, 19, 22882 (2011). https://doi.org/10.1364/OE.19.022882

11. I.D.Voitovich, S.G.Korsunskyi, Sensors Based on Plasmon Resonance: Principles, Technologies, Applications, Stal, Kyiv (2011) [in Russian].

12. G.V.Dorozinsky, M.V.Lobanov, V.P.Maslov, East. Europ. J. Enterprise Techn, 4, 4 (2015).

13. N.Gridina, G.Dorozinsky, R.Khristosenkoet et al., Sensors and Transducers, 149, 60 (2013).

14. O.Wiener, Abhanl. Math-phys. Kl. Sachs. Wiss, 32, 509 (1912).

15. R.M.A.Azzam, Ellipsometry and Polarized Light, North-Holland, Amsterdam (1987).

16. J.M.Garnett, Philosophic Transact Royal Soc. London. Ser. A, Contain. Papers Mathemat. Phys. Character, 237 (1906).

17. V.D.Bruggeman, Ann. Phys-Leipzig, 7, 636 (1935). https://doi.org/10.1002/andp.19354160705

18. G.V.Dorozinsky, V.P.Maslov, Yu.V.Ushenin, Sensor Devices Based on Surface Plasmon Resonance, Politekhnika (2016) [in Ukrainian].

19. S.Kedenburg, M.Vieweg, T.Gissiblet et al., Opt. Mat. Express, 2, 1588 (2012). https://doi.org/10.1364/OME.2.001588

20. H.R.Phillip, E.A.Taft, Phys. Rev., 136, A1445 (1964). https://doi.org/10.1103/PhysRev.136.A1445

21. E.Kretschmann, H.Raether, Z. Naturforsch., 123, 2135 (1968).

22. A.D.Rakic, A.B.Djurisic, J.M.Elazar et al., Appl. Opt., 37, 5271 (1998). https://doi.org/10.1364/AO.37.005271

23. V.I.Chegel, Yu.M.Shirshov, S.O.Kostyukevich et al., Semicond. Phys., Quant. Electron. & Optoelectron., 4, 301 (2001).

24. V.Yu.Plakhotnik, G.A.Polyakov, G.A.Dolinskii, Visnyk Sev NTU, 99, 82 (2009)

Current number: