Funct. Mater. 2018; 25 (1): 172-179.

doi:https://doi.org/10.15407/fm25.01.172

Multi-layered composite detectors for neutron detection

V.D.Ryzhikov, B.V.Grinyov, A.Yu.Boyarintsev, V.S.Tinkova, V.V.Maksymchuk, A.G.Yakubovskaya, I.A.Tupitsyna

Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Science of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

The paper considers the influence of manufacturing technological features of composite scintillator with optimal scintillation characteristics based on heavy-oxide crushed single crystals for making ZEBRA-detectors for fast neutrons registration. It has been shown that registration efficiency of fast neutrons by multi-layered ZEBRA-detectors based on crushed Bi4Ge3O12, Gd2SiO5:Ce and ZnWO4 crystals achieved the value about 50 %. Sensitivity of ZEBRA-detectors with size of 100×100×41 mm3 is comparable to sensitivity of 3He counter with moderator. ZnWO4 powder obtained by solid state synthesis is proposed as an alternative filler to crushed crystal powders for scintillation composite. Results of measurements of technical detection efficiency and sensitivity for fast neutrons (sources Pu-Be and 252Cf) showed that detection efficiency of ZEBRA-detector based on synthesized scintillation ZnWO4 powder is comparable with detector based on crushed ZnWO4 single crystal of the same size. Qualitative explanations are presented for abnormal high sensitivity of multi-layered composite detectors. ZEBRA-detector is promising for application in the field of homeland security and nuclear safeguards.

Keywords: 
fast neutrons measurements, inelastic and resonant neutron scattering, radiation detectors, multilayer scintillation detectors, nuclear safeguard; He-3 alternative.
References: 

1. U.S. Patent US 8,941,075 (2015).

2. U.K.Akimov, Phys. Part. Nucl., 25, 206 (1994).

3. J.L.Lacy, A.Athanasiades et al., Nucl. Instr. Meth. Phys. Res.:A, 652, 359 (2011).

4. L.Wanga, J.Jarrella, S.Xuea et al., Nucl. Instr. Meth. Phys. Res.:A, publication online 31 January 2018.

5. L3 Security & Detection Systems, USA:http://www.sds.l-3com.com .

6. V.N.Marin, P.A.Sadykov, D.N.Trunov et al., Letters at GETF, 5 (2015).

7. M.K.Singhab, A.Sonayac, M.Deniz, Nucl. Instr. Meth. Phys. Res.:A , 868, 109 (2017) .

8. Rus. Federation Patent RU 2570588 (2017).

9. U.S. Patent US/0272910 (2009).

10. V.D.Ryzhikov, S.V.Naydenov, G.M.Onyshchenko et al., Radiat. Meas., 105, 17 (2017). https://doi.org/10.1016/j.radmeas.2017.08.008

11. V.Ryzhikov, B.Grynyov, G.Onishcenko et al., in: Zbirnyk Naukovuh Prats′ SNUYAEtaP, 4, 44 (2012), p.170 [in Russian].

12. P.Buchele, M.Richter, S.C.Tedde et al., Nature Photon., 9, 846 (2015). https://doi.org/10.1038/nphoton.2015.216

13. V.D.Ryzhikov, in: Proc. 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), San Diego, CA, USA (2015), p.48.

14. Patent Application Ukraine, a201708723 (2017).

15. V.D.Ryzhikov, B.V.Grinyov, G.M.Onyshcenko et al., Funct. Mater., 21, 345 (2014). https://doi.org/10.15407/fm21.03.345

16. V.D.Ryzhikov, S.V.Naydenov, T.Pochet et al., in: Proc. ANIMMA-2017 Conference, Liege, Belgium, 170 (2017), p.305.

17. V.Ryzhikov, B.Grynyov, G.Onishcenko et al., Telecomm. Radio Eng., 71, 1665 (2012). https://doi.org/10.1615/TelecomRadEng.v71.i18.50

18. N.Z.Galunov, O.A.Tarasenko, V.A.Tarasov, Funct. Matter., 22, 61 (2015). https://doi.org/10.15407/fm22.01.061

19. N.Z.Galunov, O.A.Tarasenko, V.A.Tarasov, Funct. Matter., 20, 304 (2013). https://doi.org/10.15407/fm20.03.304

20. T.E.Gorbacheva, V.A.Tarasov, N.Z.Galunov, Funct. Mater., 22, 408 (2015). https://doi.org/10.15407/fm22.03.408

21. L.L.Nagornaya, B.V.Grinyov, A.M.Dubovik et al., IEEE Trans. Nucl. Sci., 56, 994 (2009). https://doi.org/10.1109/TNS.2009.2016342

22. U.S. Patent US 2009 \0272910 (2009).

23. Patent of Ukraine 25484A (1998).

24. A.V.Bushuev, Experimental Reactors Physic, MIFI, Moscow (2008) [in Russian].

25. D.P.Taylor, Appl. Chem., 71, 1593 (1999). https://doi.org/10.1351/pac199971081593

Current number: